1 Introduction

Let a,b>0 with ab. Then the Schwab-Borchardt mean SB(a,b) [13], and the Neuman means S H A (a,b), S A H (a,b), S C A (a,b), and S A C (a,b) [4, 5] of a and b are given by

S B ( a , b ) = b 2 a 2 cos 1 ( a / b ) ( a < b ) , S B ( a , b ) = a 2 b 2 cosh 1 ( a / b ) ( a > b ) , S H A ( a , b ) = S B [ H ( a , b ) , A ( a , b ) ] , S A H ( a , b ) = S B [ A ( a , b ) , H ( a , b ) ] , S C A ( a , b ) = S B [ C ( a , b ) , A ( a , b ) ] , S A C ( a , b ) = S B [ A ( a , b ) , C ( a , b ) ] ,

respectively. Here, cos 1 (x) and cosh 1 (x)=log(x+ x 2 1 ) are, respectively, the inverse cosine and inverse hyperbolic cosine functions, and H(a,b)=2ab/(a+b), A(a,b)=(a+b)/2, and C(a,b)=( a 2 + b 2 )/(a+b) are, respectively, the classical harmonic, arithmetic, and contraharmonic means of a and b.

Let v=(ab)/(a+b)(1,1), and p(0,), q(0,π/2), r(0,log(2+ 3 )), and s(0,π/3) be the parameters such that 1/cosh(p)=cos(q)=1 v 2 and cosh(r)=1/cosh(s)=1+ v 2 . Then the following explicit formulas were found by Neuman [4]:

S A H (a,b)=A(a,b) tanh ( p ) p , S H A (a,b)=A(a,b) sin ( q ) q ,
(1.1)
S C A (a,b)=A(a,b) sinh ( r ) r , S A C (a,b)=A(a,b) tan ( s ) s .
(1.2)

Let p[0,1] and N be a bivariate symmetric mean. Then the one-parameter bivariate mean N p (a,b) was defined by Neuman [6] as follows:

N p (a,b)=N [ ( 1 + p ) 2 a + ( 1 p ) 2 b , ( 1 + p ) 2 b + ( 1 p ) 2 a ] .
(1.3)

Recently, the Neuman means S A H , S H A , S C A , and S A C , and the one-parameter bivariate mean N p have been the subject of intensive research. He et al. [7] found the greatest values α 1 , α 2 [0,1/2], and α 3 , α 4 [1/2,1], and the least values β 1 , β 2 [0,1/2], and β 3 , β 4 [1/2,1] such that the double inequalities

H [ α 1 a + ( 1 α 1 ) b , α 1 b + ( 1 α 1 ) a ] < S A H ( a , b ) < H [ β 1 a + ( 1 β 1 ) b , β 1 b + ( 1 β 1 ) a ] , H [ α 2 a + ( 1 α 2 ) b , α 2 b + ( 1 α 2 ) a ] < S H A ( a , b ) < H [ β 2 a + ( 1 β 2 ) b , β 2 b + ( 1 β 2 ) a ] , C [ α 3 a + ( 1 α 3 ) b , α 3 b + ( 1 α 3 ) a ] < S C A ( a , b ) < C [ β 3 a + ( 1 β 3 ) b , β 3 b + ( 1 β 3 ) a ] , C [ α 4 a + ( 1 α 4 ) b , α 4 b + ( 1 α 4 ) a ] < S A C ( a , b ) < C [ β 4 a + ( 1 β 4 ) b , β 4 b + ( 1 β 4 ) a ]

hold for all a,b>0 with ab.

In [4, 5], Neuman proved that the inequalities

H ( a , b ) < S A H ( a , b ) < L ( a , b ) < S H A ( a , b ) < P ( a , b ) , T ( a , b ) < S C A ( a , b ) < Q ( a , b ) < S A C ( a , b ) < C ( a , b ) , H 1 / 3 ( a , b ) A 2 / 3 ( a , b ) < S H A ( a , b ) < 1 3 H ( a , b ) + 2 3 A ( a , b ) , C 1 / 3 ( a , b ) A 2 / 3 ( a , b ) < S C A ( a , b ) < 1 3 C ( a , b ) + 2 3 A ( a , b ) , A 1 / 3 ( a , b ) H 2 / 3 ( a , b ) < S A H ( a , b ) < 1 3 A ( a , b ) + 2 3 H ( a , b ) , A 1 / 3 ( a , b ) C 2 / 3 ( a , b ) < S A C ( a , b ) < 1 3 A ( a , b ) + 2 3 C ( a , b )
(1.4)

hold for all a,b>0 with ab, where L(a,b)=(ab)/(logalogb), P(a,b)=(ab)/[2arcsin((ab)/(a+b))], Q(a,b)= ( a 2 + b 2 ) / 2 , and T(a,b)=(ab)/[2arctan((ab)/(a+b))] are, respectively, the logarithmic, first Seiffert, quadratic, and second Seiffert means of a and b.

Qian and Chu [8] proved that the double inequalities

α 1 A ( a , b ) + ( 1 α 1 ) G ( a , b ) < S H A ( a , b ) < β 1 A ( a , b ) + ( 1 β 1 ) G ( a , b ) , α 2 A ( a , b ) + ( 1 α 2 ) Q ( a , b ) < S C A ( a , b ) < β 2 A ( a , b ) + ( 1 β 2 ) Q ( a , b )

hold for all a,b>0 with ab if and only if α 1 1/3, β 1 π/2, α 2 1/3, and β 2 [ 2 log(2+ 3 ) 3 ]/[( 2 1)log(2+ 3 )]=0.2394, where G(a,b)= a b is the geometric mean of a and b.

In [9], the authors proved that the double inequalities

α 1 [ H ( a , b ) 3 + 2 A ( a , b ) 3 ] + ( 1 α 1 ) H 1 / 3 ( a , b ) A 2 / 3 ( a , b ) < S H A ( a , b ) < β 1 [ H ( a , b ) 3 + 2 A ( a , b ) 3 ] + ( 1 β 1 ) H 1 / 3 ( a , b ) A 2 / 3 ( a , b ) , α 2 [ C ( a , b ) 3 + 2 A ( a , b ) 3 ] + ( 1 α 2 ) C 1 / 3 ( a , b ) A 2 / 3 ( a , b ) < S C A ( a , b ) < β 2 [ C ( a , b ) 3 + 2 A ( a , b ) 3 ] + ( 1 β 2 ) C 1 / 3 ( a , b ) A 2 / 3 ( a , b ) , α 3 [ A ( a , b ) 3 + 2 H ( a , b ) 3 ] + ( 1 α 3 ) A 1 / 3 ( a , b ) H 2 / 3 ( a , b ) < S A H ( a , b ) < β 3 [ A ( a , b ) 3 + 2 H ( a , b ) 3 ] + ( 1 β 3 ) A 1 / 3 ( a , b ) H 2 / 3 ( a , b ) , α 4 [ A ( a , b ) 3 + 2 C ( a , b ) 3 ] + ( 1 α 4 ) A 1 / 3 ( a , b ) C 2 / 3 ( a , b ) < S A C ( a , b ) < β 4 [ A ( a , b ) 3 + 2 C ( a , b ) 3 ] + ( 1 β 4 ) A 1 / 3 ( a , b ) C 2 / 3 ( a , b )

hold for all a,b>0 with ab if and only if α 1 4/5, β 1 3/π, α 2 3[ 2 3 log(2+ 3 ) 3 ]/[(3 2 3 4)log(2+ 3 )]=0.7528, β 2 4/5, α 3 0, β 3 4/5, α 4 4/5, and β 4 3(3 3 4 3 π)/[(53 4 3 )π]=0.8400.

Let p, p i , q i , α j , β j [0,1] (i,j=1,2,,8). Then Neuman [6, 10] proved that the inequalities

H p 1 ( a , b ) < P ( a , b ) < H q 1 ( a , b ) , G p 2 ( a , b ) < P ( a , b ) < G q 2 ( a , b ) , Q p 3 ( a , b ) < T ( a , b ) < Q q 3 ( a , b ) , C p 4 ( a , b ) < T ( a , b ) < C q 4 ( a , b ) , Q p 5 ( a , b ) < M ( a , b ) < Q q 5 ( a , b ) , C p 6 ( a , b ) < M ( a , b ) < C q 6 ( a , b ) , H p 7 ( a , b ) < L ( a , b ) < H q 7 ( a , b ) , G p 8 ( a , b ) < L ( a , b ) < G q 8 ( a , b ) , α 1 A ( a , b ) + ( 1 α 1 ) G p ( a , b ) < P p ( a , b ) < β 1 A ( a , b ) + ( 1 β 1 ) G p ( a , b ) , α 2 Q p ( a , b ) + ( 1 α 2 ) A ( a , b ) < T p ( a , b ) < β 2 Q p ( a , b ) + ( 1 β 2 ) A ( a , b ) , α 3 Q p ( a , b ) + ( 1 α 3 ) A ( a , b ) < M p ( a , b ) < β 3 Q p ( a , b ) + ( 1 β 3 ) A ( a , b ) , α 4 A ( a , b ) + ( 1 α 4 ) G p ( a , b ) < L p ( a , b ) < β 4 A ( a , b ) + ( 1 β 4 ) G p ( a , b ) , A α 5 ( a , b ) G p 1 α 5 ( a , b ) < P p ( a , b ) < A β 5 ( a , b ) G p 1 β 5 ( a , b ) , Q p α 6 ( a , b ) A 1 α 6 ( a , b ) < T p ( a , b ) < Q p β 6 ( a , b ) A 1 β 6 ( a , b ) , Q p α 7 ( a , b ) A 1 α 7 ( a , b ) < M p ( a , b ) < Q p β 7 ( a , b ) A 1 β 7 ( a , b ) , A α 8 ( a , b ) G p 1 α 8 ( a , b ) < L p ( a , b ) < A β 8 ( a , b ) G p 1 β 8 ( a , b ) ,

hold for all a,b>0 with ab if and only if p 1 1 2 / π , q 1 6 /6, p 2 1 4 / π 2 , q 2 3 /3, p 3 16 / π 2 1 , q 3 6 /3, p 4 4 / π 1 , q 4 3 /3, p 5 1 / log 2 ( 1 + 2 ) 1 , q 5 3 /3, p 6 1 / log ( 1 + 2 ) 1 , q 6 6 /6, p 7 =1, q 7 3 /3, p 8 =1, q 8 6 /3, α 1 2/π, β 1 2/3, α 2 (4π)/[( 2 1)π], β 2 2/3, α 3 [1log(1+ 2 )]/[( 2 1)log(1+ 2 )], β 3 1/3, α 4 =0, β 4 1/3, α 5 2/3, β 5 =1, α 6 2/3, β 6 (4log22logπ)/log2, α 7 1/3, β 7 log[log(1+ 2 )]/log[cosh(log(1+ 2 ))], α 8 1/3, β 8 =1, where M(a,b)=(ab)/[2 sinh 1 ((ab)/(a+b))] is the Neuman-Sándor mean of a and b.

The main purpose of this paper is to present the best possible parameters p 1 , p 2 , p 3 , p 4 , q 1 , q 2 , q 3 , q 4 on the interval [0,1] such that the double inequalities

G p 1 ( a , b ) < S H A ( a , b ) < G q 1 ( a , b ) , Q p 2 ( a , b ) < S C A ( a , b ) < Q q 2 ( a , b ) , H p 3 ( a , b ) < S A H ( a , b ) < H q 3 ( a , b ) , C p 4 ( a , b ) < S A C ( a , b ) < C q 4 ( a , b )

hold for all a,b>0 with ab.

2 Main results

Theorem 2.1 Let p 1 , q 1 [0,1]. Then the double inequality

G p 1 (a,b)< S H A (a,b)< G q 1 (a,b)
(2.1)

holds for all a,b>0 with ab if and only if p 1 6 /3 and q 1 1 4 / π 2 .

Proof Without loss of generality, we assume that a>b. Let v=(ab)/(a+b), λ=v 2 v 2 , x= 1 λ 2 and p[0,1]. Then v,λ,x(0,1), and (1.1) and (1.3) lead to

S H A ( a , b ) G p ( a , b ) = A ( a , b ) [ λ arcsin ( λ ) 1 p 2 ( 1 1 λ 2 ) ] = A ( a , b ) 1 p 2 ( 1 1 λ 2 ) arcsin ( λ ) F ( x ) ,
(2.2)

where

F(x)= 1 x 2 1 p 2 ( 1 x ) arcsin ( 1 x 2 ) ,
(2.3)
F(0)= 1 1 p 2 π 2 ,F(1)=0,
(2.4)
F (x)= ( 1 x ) f ( x ) 2 1 x 2 ( p 2 x + 1 p 2 ) 3 / 2 [ 2 ( p 2 x + 1 p 2 ) 3 / 2 + p 2 x + 2 ( 1 p 2 ) x + p 2 ] ,
(2.5)

where

f ( x ) = p 4 x 3 + ( 4 p 6 + 3 p 4 4 p 2 ) x 2 + ( 8 p 6 + 9 p 4 + 4 p 2 4 ) x + ( 4 p 6 11 p 4 + 12 p 2 4 ) ,
(2.6)
f (x)=3 p 4 x 2 +2 ( 4 p 6 + 3 p 4 4 p 2 ) x+ ( 8 p 6 + 9 p 4 + 4 p 2 4 ) .
(2.7)

We divide the discussion into two cases.

Case 1 p= 6 /3. Then (2.6) becomes

f(x)= 4 27 (1x) ( 3 x 2 + 4 x + 2 ) .
(2.8)

From (2.5) and (2.8) we clearly see that F(x) is strictly decreasing on [0,1], then (2.4) leads to the conclusion that

F(x)>0
(2.9)

for all x(0,1).

Therefore,

S H A (a,b)> G 6 / 3 (a,b)
(2.10)

for all a,b>0 with ab follows from (2.2) and (2.9).

Case 2 p= 1 4 / π 2 . Then numerical computations lead to

4 p 6 +3 p 4 4 p 2 = 3 π 6 56 π 4 + 240 π 2 256 π 6 <0,
(2.11)
8 p 6 +9 p 4 +4 p 2 4= π 6 + 8 π 4 240 π 2 + 512 π 6 <0,
(2.12)
f(0)=4 p 6 11 p 4 +12 p 2 4= π 6 8 π 4 + 16 π 2 256 π 6 >0,
(2.13)
f(1)=4 ( 3 p 2 2 ) = 4 ( 12 π 2 ) π 2 <0.
(2.14)

It follows from (2.7) and (2.11) together with (2.12) that f(x) is strictly decreasing on [0,1]. Then inequalities (2.13) and (2.14) together with (2.5) lead to the conclusion that there exists λ 1 (0,1) such that F(x) is strictly decreasing on [0, λ 1 ] and strictly increasing on [ λ 1 ,1].

Note that inequality (2.4) becomes

F(0)=F(1)=0.
(2.15)

From (2.2), (2.15), and the piecewise monotonicity of F(x) we clearly see that the inequality

S H A (a,b)< G 1 4 / π 2 (a,b)
(2.16)

holds for all a,b>0 with ab.

Note that

lim λ 0 + arcsin 2 ( λ ) λ 2 arcsin ( λ ) 1 1 λ 2 = 6 3 ,
(2.17)
lim λ 1 arcsin 2 ( λ ) λ 2 arcsin ( λ ) 1 1 λ 2 = 1 4 π 2 .
(2.18)

Therefore, Theorem 2.1 follows from (2.10) and (2.16)-(2.18) together with the fact that inequality (2.1) is equivalent to the inequality (2.19) as follows:

q 1 < arcsin 2 ( λ ) λ 2 arcsin ( λ ) 1 1 λ 2 < p 1 .
(2.19)

 □

Theorem 2.2 Let p 2 , q 2 [0,1]. Then the double inequality

Q p 2 (a,b)< S C A (a,b)< Q q 2 (a,b)
(2.20)

holds for all a,b>0 with ab if and only if p 2 6 /3 and q 2 3 / log 2 ( 2 + 3 ) 1 =0.8542.

Proof Without loss of generality, we assume that a>b. Let v=(ab)/(a+b), μ=v 2 + v 2 , x= 1 + μ 2 , and p[0,1]. Then v(0,1), μ(0, 3 ), x(1,2), and (1.2) and (1.3) lead to

S C A ( a , b ) Q p ( a , b ) = A ( a , b ) [ μ sinh 1 ( μ ) 1 + p 2 ( 1 + μ 2 1 ) ] = A ( a , b ) 1 + p 2 ( 1 + μ 2 1 ) sinh 1 ( μ ) G ( x ) ,
(2.21)

where

G ( x ) = x 2 1 1 + p 2 ( x 1 ) sinh 1 ( x 2 1 ) , G ( 1 ) = 0 , G ( 2 ) = 3 1 + p 2 log ( 2 + 3 ) ,
(2.22)
G (x)= ( x 1 ) f ( x ) 2 x 2 1 ( p 2 x + 1 p 2 ) 3 / 2 [ p 2 x 2 + 2 ( p 2 x + 1 p 2 ) 3 / 2 + 2 ( 1 p 2 ) x + p 2 ] ,
(2.23)

where f(x) is defined by (2.6).

We divide the discussion into two cases.

Case 1 p= 6 /3. Then it follows from (2.6) that

f(x)= 4 27 (x1) ( 3 x 2 + 4 x + 2 ) <0
(2.24)

for all x(1,2).

Therefore,

S C A (a,b)> Q 6 / 3 (a,b)
(2.25)

for all a,b>0 with ab follows easily from (2.21)-(2.24).

Case 2 p= 3 / log 2 ( 2 + 3 ) 1 . Then numerical computations lead to

4 p 6 +3 p 4 4 p 2 =0.2329>0,
(2.26)
8 p 6 +9 p 4 +4 p 2 4=0.6027>0,
(2.27)
3 p 4 p 2 1=0.1322<0,
(2.28)
f(1)=4 ( 3 p 2 2 ) =0.7567>0,
(2.29)
f(2)=4 p 6 +11 p 4 +4 p 2 12=1.669<0.
(2.30)

It follows from (2.7) and (2.26)-(2.28) that

f ( x ) < 3 p 4 x 2 + 2 ( 4 p 6 + 3 p 4 4 p 2 ) x 2 + ( 8 p 6 + 9 p 4 + 4 p 2 4 ) x 2 = 4 ( 3 p 4 p 2 1 ) x 2 < 0
(2.31)

for x(1,2).

Equation (2.23) and inequalities (2.29)-(2.31) lead to the conclusion that there exists λ 2 (1,2) such that G(x) is strictly decreasing on [0, λ 2 ] and strictly increasing on [ λ 2 ,1].

Note that (2.22) becomes

G(1)=G(2)=0.
(2.32)

Therefore,

S C A (a,b)< Q 3 / log 2 ( 2 + 3 ) 1 (a,b)
(2.33)

for all a,b>0 with ab follows from (2.21) and (2.32) together with the piecewise monotonicity of G(x).

Note that

lim μ 0 + μ 2 [ sinh 1 ( μ ) ] 2 sinh 1 ( μ ) 1 + μ 2 1 = 6 3 ,
(2.34)
lim μ 3 μ 2 [ sinh 1 ( μ ) ] 2 sinh 1 ( μ ) 1 + μ 2 1 = 3 log 2 ( 2 + 3 ) 1 .
(2.35)

Therefore, Theorem 2.2 follows from (2.25) and (2.33)-(2.35) together with the fact that inequality (2.20) is equivalent to the inequality (2.36) as follows:

p 2 < μ 2 [ sinh 1 ( μ ) ] 2 sinh 1 ( μ ) 1 + μ 2 1 < q 2 .
(2.36)

 □

Theorem 2.3 Let p 3 , q 3 [0,1]. Then the double inequality

H p 3 (a,b)< S A H (a,b)< H q 3 (a,b)
(2.37)

holds for all a,b>0 with ab if and only if p 3 =1 and q 3 6 /3.

Proof Without loss of generality, we assume that a>b. Let v=(ab)/(a+b), λ=v 2 v 2 , x= 1 λ 2 and p[0,1]. Then v,λ,x(0,1), and (1.1) and (1.3) lead to

S A H ( a , b ) H p ( a , b ) = A ( a , b ) [ λ tanh 1 ( λ ) + p 2 ( 1 1 λ 2 ) 1 ] = A ( a , b ) [ 1 p 2 ( 1 1 λ 2 ) ] tanh 1 ( λ ) H ( x ) ,
(2.38)

where

H ( x ) = 1 x 2 p 2 x + ( 1 p 2 ) tanh 1 ( 1 x 2 ) , H ( 1 ) = 0 ,
(2.39)
H (x)= 1 x x 1 x 2 [ p 2 x + ( 1 p 2 ) ] 2 g(x),
(2.40)

where

g(x)= ( p 4 + p 2 1 ) x p 4 +2 p 2 1.
(2.41)

We divide the discussion into two cases.

Case 1 p= 6 /3. Then (2.41) leads to

g(x)= 1 9 (1x)<0
(2.42)

for x(0,1).

Therefore,

S A H (a,b)< H 6 / 3 (a,b)
(2.43)

for all a,b>0 with ab follows easily from (2.38)-(2.40) and (2.42).

Case 2 p=1. Then it follows from (1.3) and (1.4) that

S A H (a,b)>H(a,b)= H 1 (a,b)
(2.44)

for all a,b>0 with ab.

Note that

lim λ 0 + tanh 1 ( λ ) λ tanh 1 ( λ ) ( 1 1 λ 2 ) = 6 3 ,
(2.45)
lim λ 1 tanh 1 ( λ ) λ tanh 1 ( λ ) ( 1 1 λ 2 ) =1.
(2.46)

Therefore, Theorem 2.3 follows from (2.43)-(2.46) and the fact that inequality (2.37) is equivalent to

q 3 < tanh 1 ( λ ) λ tanh 1 ( λ ) ( 1 1 λ 2 ) < p 3 .

 □

Theorem 2.4 Let p 4 , q 4 [0,1]. Then the double inequality

C p 4 (a,b)< S A C (a,b)< C q 4 (a,b)
(2.47)

holds for all a,b>0 with ab if and only if p 4 3 3 / π 1 and q 4 6 /3.

Proof Without loss of generality, we assume that a>b. Let v=(ab)/(a+b), μ=v 2 + v 2 , x= 1 + μ 2 , and p[0,1]. Then v(0,1), μ(0, 3 ), x(1,2), and (1.2) and (1.3) lead to

S A C ( a , b ) C p ( a , b ) = A ( a , b ) [ μ arctan ( μ ) p 2 ( 1 + μ 2 1 ) 1 ] = A ( a , b ) [ 1 + p 2 ( 1 + μ 2 1 ) ] arctan ( μ ) J ( x ) ,
(2.48)

where

J ( x ) = x 2 1 p 2 x + ( 1 p 2 ) arctan ( x 2 1 ) , J ( 1 ) = 0 , J ( 2 ) = 3 p 2 + 1 π 3 ,
(2.49)
J (x)= x 1 x x 2 1 [ p 2 x + ( 1 p 2 ) ] 2 g(x),
(2.50)

where g(x) is defined by (2.41).

We divide the discussion into two cases.

Case 1 p= 6 /3. Then (2.41) leads to

g(x)= 1 9 (x1)>0
(2.51)

for x(1,2).

Therefore,

S A C (a,b)< C 6 / 3 (a,b)
(2.52)

for all a,b>0 with ab follows easily from (2.48)-(2.51).

Case 2 p= 3 3 / π 1 . Then numerical computations lead to

p 4 + p 2 1= 27 π 2 3 3 π π 2 >0,
(2.53)
g(1)=3 p 2 2= 9 3 5 π π <0,
(2.54)
g(2)= p 4 +4 p 2 3= 27 6 π 2 + 6 3 π π 2 >0.
(2.55)

From (2.41) and (2.50) together with (2.53)-(2.55) we clearly see that there exists λ 3 (1,2) such that J(x) is strictly increasing on [1, λ 3 ] and strictly decreasing on [ λ 3 ,2].

Note that (2.49) becomes

J(1)=J(2)=0.
(2.56)

It follows from (2.56) and the piecewise monotonicity of J(x) that

J(x)>0
(2.57)

for all x(1,2).

Therefore,

S A C (a,b)> C 3 3 / π 1 (a,b)
(2.58)

for all a,b>0 with ab follows from (2.48) and (2.58).

Note that

lim μ 0 + μ arctan ( μ ) arctan ( μ ) ( 1 + μ 2 1 ) = 6 3 ,
(2.59)
lim μ 1 μ arctan ( μ ) arctan ( μ ) ( 1 + μ 2 1 ) = 3 3 π 1 .
(2.60)

Therefore, Theorem 2.4 follows from (2.52) and (2.58)-(2.60) together with the fact that inequality (2.47) is equivalent to

p 4 < μ arctan ( μ ) arctan ( μ ) ( 1 + μ 2 1 ) < q 4 .

 □