1 Introduction

Hussain et al. [1] gave the definition of parametric metric spaces. They also studied the existence of fixed points for mappings under different contractions in such spaces. A generalization of parametric metric spaces, parametric b-metric spaces, was given by Hussain et al. [2]. Another extension of parametric metric spaces to three dimensions, parametric S-metric spaces, was introduced by Nihal et al. [3]. Also, Priyobarta et al. [4] introduced the notion of parametric A-metric spaces. Branciari [5] introduced generalized metric spaces. Suzuki [6] and others have pointed out that the topology of a generalized metric space has some drawbacks as a generalized metric need not be continuous, need not have a compatible topology, and in a generalized metric space, a convergent sequence may be a non-Cauchy sequence. Also, a generalized metric is not Hausdrof,f and a limit with respect yo it is not unique. Various forms of parametric metric spaces can be found in [718] and references therein. Also, there many applications in the literature [1925].

First, we recall the following definitions.

Definition 1.1

([1])

Consider a set \(\Omega \neq \phi \). A function \(\mathcal{P}m:\Omega \times \Omega \times (0,+\infty )\rightarrow [0,+ \infty )\) is called a parametric metric on Ω if

  1. (i)

    \(\mathcal{P}m(\zeta ,\eta ,x)=0\) for all \(x>0\) implies \(\zeta =\eta \);

  2. (ii)

    \(\mathcal{P}m(\zeta ,\eta ,x)=\mathcal{P}(\eta ,\zeta ,x)\) for all \(x>0\);

  3. (iii)

    \(\mathcal{P}m(\zeta ,\eta ,x)\leq \mathcal{P}(\zeta ,\mu ,x)+ \mathcal{P}(\mu ,\eta ,x)\) for all \(\zeta ,\eta ,\mu \in \Omega \) and \(x>0\).

The pair \((\Omega ,\mathcal{P}m)\) is said to be a parametric metric space.

Definition 1.2

([5])

Consider a set \(\Omega \neq \phi \). A function \(d: \Omega \times \Omega \rightarrow [0,+\infty )\) is called a generalized metric on Ω if

  1. (i)

    \(d(\zeta ,\eta )=0\) implies \(\zeta =\eta \);

  2. (ii)

    \(d(\zeta ,\eta )=d(\eta ,\zeta )\);

  3. (iii)

    \(d(\zeta ,\eta )\leq d(\zeta ,\mu )+d(\mu ,\lambda )+d(\lambda ,\eta )\)

for all distinct \(\mu ,\lambda \in \Omega -\{\zeta ,\eta \}\). The pair \((\Omega ,d)\) is said to be a generalized metric space.

Now we introduce generalized parametric metric spaces.

Definition 1.3

Consider a set \(\Omega \neq \phi \). A function \(\mathcal{P}m:\Omega \times \Omega \times (0,+\infty )\rightarrow [0,+ \infty )\) is called a generalized parametric metric on Ω if

  1. (i)

    \(\mathcal{P}m(\zeta ,\eta ,x)=0\) for all \(x>0\) implies \(\zeta =\eta \);

  2. (ii)

    \(\mathcal{P}m(\zeta ,\eta ,x)=\mathcal{P}m(\eta ,\zeta ,x)\) for all \(x>0\);

  3. (iii)

    \(\mathcal{P}m(\zeta ,\eta ,x)\leq \mathcal{P}m(\zeta ,\mu ,x)+ \mathcal{P}m(\mu ,\lambda ,x)+\mathcal{P}m(\lambda ,\eta ,x)\) for all distinct \(\mu ,\lambda \in \Omega -\{\zeta ,\eta \}\).

The pair \((\Omega ,\mathcal{P}m)\) is said to be a generalized parametric metric space.

Definition 1.4

Consider a sequence \(\{\zeta _{n}\}\) in a generalized parametric metric space \((\Omega ,\mathcal{P}m)\).

  1. 1.

    \(\{\zeta _{n}\}\) is called a convergent sequence converging to \(\zeta \in \Omega \) and expressed as \({\lim_{n \to \infty }} \zeta _{n}=\zeta \) if \({\lim_{n\to \infty }} \mathcal{P}m(\zeta _{n},\zeta ,x)=0\) for all \(x>0\).

  2. 2.

    \(\{\zeta _{n}\}\) is called a Cauchy sequence in Ω if \({\lim_{n\to \infty }} \mathcal{P}m(\zeta _{n},\zeta _{m},x)=0\) for all \(x>0\).

  3. 3.

    \((\Omega ,\mathcal{P}m)\) is said to be complete if every Cauchy sequence in it is convergent.

Definition 1.5

Let C be a self-mapping in a generalized parametric metric space \((\Omega ,\mathcal{P}m)\). If for every sequence \(\{\zeta _{n}\}\) in Ω satisfying \(\zeta _{n}\rightarrow \zeta \) as \(n \rightarrow \infty \), \(C(\zeta _{n})\to C(\zeta )\), then we say that C is a continuous mapping at ζ in Ω.

Following the definition of α-admissibility introduced in [26] and [27], we give the corresponding definition for generalized parametric metric space.

Definition 1.6

Suppose that \(\Omega \neq \phi \), and let \(\alpha : \Omega \times \Omega \times (0,+\infty ) \rightarrow [0, + \infty )\). A mapping \(C:\Omega \rightarrow \Omega \) is called an α-admissible mapping if \(\alpha (\zeta ,\eta ,x)\geq 1\) gives \(\alpha (C\zeta ,C\eta ,x)\geq 1\) for all \(\zeta ,\eta \in \Omega \) and \(x>0\).

Definition 1.7

Let \((\Omega ,\mathcal{P}m)\) be a generalized parametric metric space, and let \(\alpha : \Omega \times \Omega \times (0,+\infty ) \rightarrow [0, + \infty )\). Then Ω is called an α-regular generalized parametric metric space if for any sequence \(\{\zeta _{n}\}\) in Ω such that \(\zeta _{n} \rightarrow \zeta \) and \(\alpha (\zeta _{n},\zeta _{n+1},x)\geq 1\), there is a subsequence \(\{\zeta _{n_{k}}\}\) of \(\{\zeta _{n}\}\) such that \(\alpha (\zeta _{n_{k}},\zeta ,x)\geq 1\) for all \(k \in \mathbb{N}\) and \(x>0\).

Proposition 1.8

Let \(\{\zeta _{n}\}\) be a Cauchy sequence in a generalized parametric metric space \((\Omega ,\mathcal{P}m)\) and \({\lim_{n \to \infty }}\mathcal{P}m (\zeta _{n},a,x)=0\) for all \(a \in \Omega \). Then \({\lim_{n \to \infty }}\mathcal{P}m(\zeta _{n},b,x)= \mathcal{P}m(a,b,x)\) for all \(b \in \Omega \) and \(x > 0\). Particularly, sequence \(\{\zeta _{n}\}\) does not converge to b if \(b \neq a\).

We denote by \(F(C)\) the set of fixed points of mapping C.

2 Main results

\((\alpha , \psi )\)-rational type contractive mappings were used by Salimi et al. [28] and Hamid et al. [29], to prove some fixed point theorems. Here we present their concept in generalized parametric metric spaces. The mapping ψ is defined as before.

Let Ψ be a collection of mappings \(\psi : [0, +\infty ) \rightarrow [0, +\infty )\) such that

  1. (i)

    ψ is strictly increasing and upper semicontinuous;

  2. (ii)

    for all \(t > 0\), \(\{\psi ^{n}(t)\}_{n\in \mathbb{N}}\) converges to 0 as \(n \rightarrow \infty \);

  3. (iii)

    \(\psi (t)< t\) for all \(t>0\).

Definition 2.1

Let \((\Omega ,\mathcal{P}m)\) be a generalized parametric metric space, and let \(\alpha : \Omega \times \Omega \times (0,+\infty ) \rightarrow [0, + \infty )\). A mapping let \(C:\Omega \rightarrow \Omega \) is called an \((\alpha ,\psi )\)-rational contractive mapping of type-I if for all \(\zeta ,\eta \in \Omega \) and \(\psi \in \Psi \),

$$ \alpha (\zeta ,\eta ,x)\mathcal{P}m(C\zeta ,C\eta ,x) \leq \psi \Bigl( \prod (\zeta ,\eta ,x)\Bigr), \quad x>0, $$
(2.1)

where

$$\begin{aligned} \prod (\zeta ,\eta ,x) =&\max \biggl\{ \mathcal{P}m(\zeta ,\eta ,x), \mathcal{P}m(\zeta ,C\zeta ,x),\mathcal{P}m(\eta ,C\eta ,x), \\ & \frac{\mathcal{P}m(\zeta ,C\zeta ,x)\mathcal{P}m(\eta ,C\eta ,x)}{1+\mathcal{P}m(\zeta ,\eta ,x)}, \frac{\mathcal{P}m(\zeta ,C\zeta ,x)\mathcal{P}m(\eta ,C\eta ,x)}{1+\mathcal{P}m(C\zeta ,C\eta ,x)} \biggr\} . \end{aligned}$$

Next, we prove a theorem that generalizes the results in [28, 29].

Theorem 2.2

Let \((\Omega ,\mathcal{P}m)\) be a complete generalized parametric metric space, and let \(\alpha : \Omega \times \Omega \times (0,+\infty ) \rightarrow [0, + \infty )\). Let \(C:\Omega \rightarrow \Omega \) be an α-admissible mapping satisfying

  1. (i)

    there exists \(\zeta _{0}\in \Omega \) satisfying \(\alpha (\zeta _{0},C\zeta _{0},x)\geq 1\) and \(\alpha (\zeta _{0},C^{2}\zeta _{0},x)\geq 1\);

  2. (ii)

    C is an \((\alpha ,\psi )\)-rational contractive mapping of type-I.

  3. (iii)

    C is continuous, or Ω is α-regular.

Then there is a fixed point \(\zeta ^{*} \in \Omega \) of C, and \(\{C^{n}\zeta _{0}\}\) converges to \(\zeta ^{*}\). Further, if for all \(\zeta ,\eta \in F(C)\) and \(x>0\), we have \(\alpha (\zeta ,\eta ,x)\geq 1\), then the fixed point of C in Ω is unique.

Proof

Let \(\zeta _{0}\in \Omega \) satisfy \(\alpha (\zeta _{0},C\zeta _{0},x)\geq 1\) and \(\alpha (\zeta _{0},C^{2}\zeta _{0},x)\geq 1\). Let us construct the sequence \(\{\zeta _{n}\}\) in Ω by \(\zeta _{n}=C^{n}\zeta _{0}=C\zeta _{n-1}\) for \(n\in \mathbb{N}\). If \(\zeta _{n_{0}}=\zeta _{n_{0}+1}\) for some \(n_{0} \in \mathbb{N}\), then \(\zeta _{n_{0}}\) is a fixed point of C. Thus suppose that \(\zeta _{n}\neq \zeta _{n+1}\) for all \(n \in \mathbb{N}\).

As C is α-admissible, \(\alpha (\zeta _{0},C\zeta _{0},x)=\alpha (\zeta _{0},\zeta _{1},x) \geq 1\) \(\Rightarrow \alpha (C\zeta _{0},C\zeta _{1},x)=\alpha (\zeta _{1}, \zeta _{2},x) \geq 1 \), and thus \(\alpha (C\zeta _{1},C\zeta _{2},x)=\alpha (\zeta _{2},\zeta _{3},x) \geq 1,\dots \). So by induction we have \(\alpha (\zeta _{n},\zeta _{n+1},x)\geq 1\) for all \(n\geq 0\).

Similarly, for \(\alpha (\zeta _{0},C^{2}\zeta _{0},x)\geq 1\), we have \(\alpha (\zeta _{0},\zeta _{2},x)= \alpha (\zeta _{0},C^{2}\zeta _{0},x) \geq 1\), \(\alpha (C\zeta _{0}, C\zeta _{2},x)=\alpha (\zeta _{1},\zeta _{3},x) \geq 1\). By induction we get \(\alpha (\zeta _{n},\zeta _{n+2},x)\geq 1\) for all \(n\geq 0\). By (2.1) with \(\zeta =\zeta _{n}\) and \(\eta =\zeta _{n+1}\) we get

$$\begin{aligned} \mathcal{P}m(\zeta _{n+1},\zeta _{n+2},x) \leq & \mathcal{P}m(C \zeta _{n},C\zeta _{n+1},x) \\ \leq & \alpha (\zeta _{n},\zeta _{n+1},x)\mathcal{P}m(C \zeta _{n},C \zeta _{n+1},x) \\ \leq & \psi \Bigl(\prod (\zeta _{n},\zeta _{n+1},x)\Bigr), \end{aligned}$$

where

$$\begin{aligned} \prod (\zeta _{n},\zeta _{n+1},x) =& \max \biggl\{ \mathcal{P}m( \zeta _{n},\zeta _{n+1},x),\mathcal{P}m(\zeta _{n},C\zeta _{n},x), \mathcal{P}m(\zeta _{n+1},C\zeta _{n+1},x), \\ & \frac{\mathcal{P}m(\zeta _{n},C\zeta _{n},x)\mathcal{P}m(\zeta _{n+1},C\zeta _{n+1},x)}{1+\mathcal{P}m(\zeta _{n},\zeta _{n+1},x)}, \frac{\mathcal{P}m(\zeta _{n},C\zeta _{n},x)\mathcal{P}(\zeta _{n+1},C\zeta _{n+1},x)}{1+\mathcal{P}m(C\zeta _{n},C\zeta _{n+1},x)} \biggr\} \\ =& \max \biggl\{ \mathcal{P}m(\zeta _{n},\zeta _{n+1},x), \mathcal{P}m( \zeta _{n},\zeta _{n+1},x),\mathcal{P}m(\zeta _{n+1},\zeta _{n+2},x), \\ & \frac{\mathcal{P}m(\zeta _{n},\zeta _{n+1},x)\mathcal{P}m(\zeta _{n+1},\zeta _{n+2},x)}{1+\mathcal{P}m(\zeta _{n},\zeta _{n+1},x)}, \frac{\mathcal{P}m(\zeta _{n},\zeta _{n+1},x)\mathcal{P}m(\zeta _{n+1},\zeta _{n+2},x)}{1+\mathcal{P}m(\zeta _{n+1},\zeta _{n+2},x)} \biggr\} \\ =& \max \bigl\{ \mathcal{P}m(\zeta _{n},\zeta _{n+1},x), \mathcal{P}m( \zeta _{n+1},\zeta _{n+2},x)\bigr\} . \end{aligned}$$
(2.2)

Let \(\prod (\zeta _{n},\zeta _{n+1},x)=\mathcal{P}m(\zeta _{n+1},\zeta _{n+2},x)\). Then

$$\begin{aligned} \mathcal{P}m(\zeta _{n+1},\zeta _{n+2},x) \leq & \psi \Bigl(\prod (\zeta _{n}, \zeta _{n+1},x)\Bigr) \\ =& \psi \bigl(\mathcal{P}m(\zeta _{n+1},\zeta _{n+2},x) \bigr) \\ \leq & \mathcal{P}m(\zeta _{n+1},\zeta _{n+2},x), \end{aligned}$$
(2.3)

which is impossible. Hence \(\prod (\zeta _{n},\zeta _{n+1},x)=\mathcal{P}m(\zeta _{n},\zeta _{n+1},x)\) for all \(n\in \mathbb{N}\), and

$$\begin{aligned} \mathcal{P}m(\zeta _{n+1},\zeta _{n+2},x) \leq & \psi \Bigl(\prod (\zeta _{n}, \zeta _{n+1},x)\Bigr) \\ =& \psi (\mathcal{P}m(\zeta _{n},\zeta _{n+1},x). \end{aligned}$$
(2.4)

By property of ψ we have

$$ \mathcal{P}m(\zeta _{n+1},\zeta _{n+2},x) \leq \mathcal{P}m(\zeta _{n}, \zeta _{n+1},x) $$
(2.5)

for every \(n\in \mathbb{N}\). By (2.4) and (2.5) we have \(\mathcal{P}m(\zeta _{n+1},\zeta _{n+2},x)\leq \psi ^{n} \mathcal{P}m( \zeta _{0},\zeta _{1},x)\) for all \(n\in \mathbb{N}\). By property of ψ we have

$$ \lim_{n \rightarrow \infty } \mathcal{P}m(\zeta _{n+1},\zeta _{n+2},x)=0. $$
(2.6)

Consider now (2.1) with \(\zeta =\zeta _{n-1}\) and \(\eta =\zeta _{n+1}\). We have

$$\begin{aligned} \mathcal{P}m(\zeta _{n},\zeta _{n+2},x) =& \mathcal{P}m(C\zeta _{n-1},C \zeta _{n+1},x) \\ \leq & \alpha (\zeta _{n-1},\zeta _{n+1},x) \mathcal{P}m(C\zeta _{n-1},C \zeta _{n+1},x) \\ \leq & \psi \Bigl(\prod (\zeta _{n-1},\zeta _{n+1},x)\Bigr), \end{aligned}$$
(2.7)

where

$$\begin{aligned} &\prod (\zeta _{n-1},\zeta _{n+1},x) \\ &\quad = \max \biggl\{ \mathcal{P}m( \zeta _{n-1}, \zeta _{n+1},x),\mathcal{P}m(\zeta _{n-1},C\zeta _{n-1},x), \mathcal{P}m(\zeta _{n+1},C\zeta _{n+1},x), \\ &\qquad \frac{\mathcal{P}m(\zeta _{n-1},C\zeta _{n-1},x)\mathcal{P}m(\zeta _{n+1},C\zeta _{n+1},x)}{1+\mathcal{P}m(\zeta _{n-1},\zeta _{n+1},x)}, \frac{\mathcal{P},m(\zeta _{n-1},C\zeta _{n-1},x)\mathcal{P}m(\zeta _{n+1},C\zeta _{n+1},x)}{1+\mathcal{P}m(C\zeta _{n-1},T\zeta _{n+1},x)} \biggr\} \\ &\quad = \max \biggl\{ \mathcal{P}m(\zeta _{n-1},\zeta _{n+1},x), \mathcal{P}m(\zeta _{n-1},\zeta _{n},x),\mathcal{P}m(\zeta _{n+1}, \zeta _{n+2},x), \\ &\qquad \frac{\mathcal{P}m(\zeta _{n-1},\zeta _{n},x)\mathcal{P}m(\zeta _{n+1},\zeta _{n+2},x)}{1+\mathcal{P}m(\zeta _{n-1},\zeta _{n+1},x)}, \frac{\mathcal{P}m(\zeta _{n-1},\zeta _{n},x)\mathcal{P}m(\zeta _{n+1},\zeta _{n+2},x)}{1+\mathcal{P}m(\zeta _{n},\zeta _{n+2},x)} \biggr\} . \end{aligned}$$
(2.8)

By (2.5), \(\mathcal{P}m(\zeta _{n+1},\zeta _{n+2},x)<\mathcal{P}m(\zeta _{n-1}, \zeta _{n},x)\). Define \(a_{n}=\mathcal{P}m(\zeta _{n},\zeta _{n+2},x)\) and \(b_{n}=\mathcal{P}m(\zeta _{n}, \zeta _{n+1},x)\). Then

$$ \prod (\zeta _{n-1},\zeta _{n+1},x)=\max \biggl\{ a_{n-1},b_{n-1}, \frac{b_{n-1}b_{n+1}}{1+a_{n-1}}, \frac{b_{n-1}b_{n+1}}{1+a_{n}} \biggr\} . $$

If \(\prod (\zeta _{n-1},\zeta _{n+1},x)=b_{n-1}\) or \(\frac{b_{n-1}b_{n+1}}{1+a_{n-1}}\) or \(\frac{b_{n-1}b_{n+1}}{1+a_{n}}\), then in (2.8) taking lim sup as \(n\rightarrow +\infty \), by (2.7) and the upper semicontinuity of ψ we have

$$\begin{aligned} 0 \leq& \limsup_{n\rightarrow \infty } a_{n} \\ \leq & \limsup _{n \rightarrow \infty } \psi \Bigl(\prod (\zeta _{n-1}, \zeta _{n+1},x)\Bigr) \\ =& \psi \Bigl(\limsup_{n\rightarrow \infty } \prod (\zeta _{n-1},\zeta _{n+1},x)\Bigr) \\ =& \psi (0)=0, \end{aligned}$$

and hence

$$ \lim_{n\rightarrow \infty } a_{n}=\lim_{n\rightarrow \infty } P( \zeta _{n},\zeta _{n+2},x)=0. $$

If \(\prod (\zeta _{n-1},\zeta _{n+1},x)=a_{n-1}\), then by (2.8) we have

$$ a_{n} \leq \psi (a_{n-1})< a_{n-1} $$

by property of ψ. Also, \(\{a_{n}\}\) being a positive decreasing sequence, it converges to some \(t \geq 0\). Let \(t >0\). Then

$$\begin{aligned} t=\limsup_{n\rightarrow \infty } a_{n} =& \limsup _{n\rightarrow \infty } \psi (a_{n-1})=\psi \Bigl(\limsup _{n\rightarrow \infty } a_{n-1}\Bigr) = \psi (t) < t, \end{aligned}$$

a contradiction, and hence

$$ \lim_{n\rightarrow \infty } a_{n}= \lim _{n\rightarrow \infty } \mathcal{P}m(\zeta _{n},\zeta _{n+2},x)=0. $$
(2.9)

For \(n \neq m\), we will show that \(\zeta _{n}\neq \zeta _{m}\). Conversely, let \(\zeta _{n}=\zeta _{m}\) for some \(m,n \in \mathbb{N}\), \(n\neq m\). Since \(\mathcal{P}m(\zeta _{p},\zeta _{p+1},x)>0\) for each \(p \in \mathbb{N}\), let \(m> n+1\). Taking \(\zeta =\zeta _{n}=\zeta _{m}\) and \(\eta =\zeta _{n+1}=\zeta _{m+1}\) in (2.1) yields

$$\begin{aligned} \mathcal{P}m(\zeta _{n},\zeta _{n+1},x) =& \mathcal{P}m(\zeta _{n},C \zeta _{n},x)=\mathcal{P}m(\zeta _{m},C\zeta _{m},x) \\ =& \mathcal{P}m(C\zeta _{m-1},C\zeta _{m},x) \\ \leq & \alpha (\zeta _{m-1},\zeta _{m},x) \mathcal{P}m(C\zeta _{m-1},C \zeta _{m},x) \\ \leq & \psi \Bigl(\prod (\zeta _{m-1},\zeta _{m},x)\Bigr), \end{aligned}$$
(2.10)

where

$$\begin{aligned} &\prod (\zeta _{m-1},\zeta _{m},x) \\ &\quad = \max \biggl\{ \mathcal{P}m( \zeta _{m-1}, \zeta _{m},x),\mathcal{P}m(\zeta _{m-1},C\zeta _{m-1},x), \mathcal{P}m(\zeta _{m},C\zeta _{m},x), \\ &\qquad \frac{\mathcal{P}m(\zeta _{m-1},C\zeta _{m-1},x)\mathcal{P}m(\zeta _{m},C\zeta _{m},x)}{1+\mathcal{P}m(\zeta _{m-1},\zeta _{m},x)}, \frac{\mathcal{P}m(\zeta _{m-1},C\zeta _{m-1},x)\mathcal{P}m(\zeta _{m},C\zeta _{m},x)}{1+\mathcal{P}m(C\zeta _{m-1},C\zeta _{m},x)} \biggr\} \\ &\quad = \max \biggl\{ \mathcal{P}m(\zeta _{m-1},\zeta _{m},x),\mathcal{P}m( \zeta _{m-1},\zeta _{m},x),\mathcal{P}m(\zeta _{m},\zeta _{m+1},x), \\ &\qquad \frac{\mathcal{P}m(\zeta _{m-1},\zeta _{m},x)\mathcal{P}m(\zeta _{m},\zeta _{m+1},x)}{1+\mathcal{P}m(\zeta _{m-1},\zeta _{m},x)}, \frac{\mathcal{P}m(\zeta _{m-1},\zeta _{m},x)\mathcal{P}m(\zeta _{m},\zeta _{m+1},x)}{1+\mathcal{P}m(\zeta _{m},\zeta _{m+1},x)} \biggr\} \\ &\quad = \max \bigl\{ \mathcal{P}m(\zeta _{m-1},\zeta _{m},x), \mathcal{P}m( \zeta _{m},\zeta _{m+1},x)\bigr\} . \end{aligned}$$
(2.11)

If \(\prod (\zeta _{m-1},\zeta _{m},x)=\mathcal{P}m(\zeta _{m-1},\zeta _{m},x)\), then (2.10) implies

$$\begin{aligned} \mathcal{P}m(\zeta _{n},\zeta _{n+1},x) \leq & \psi \bigl(\mathcal{P}m( \zeta _{m-1}, \zeta _{m},x)\bigr) \\ \leq & \psi ^{m-n} \bigl(\mathcal{P}m(\zeta _{n},\zeta _{n+1},x)\bigr). \end{aligned}$$
(2.12)

If, on the other hand, \(\prod (\zeta _{m-1},\zeta _{m},x)=\mathcal{P}m(\zeta _{m},\zeta _{m+1},x)\), then from (2.10) we have

$$\begin{aligned} \mathcal{P}m(\zeta _{n},\zeta _{n+1},x) \leq & \psi \bigl(\mathcal{P}m( \zeta _{m}, \zeta _{m+1},x)\bigr) \\ \leq & \psi ^{m-n+1} \bigl(\mathcal{P}m(\zeta _{n},\zeta _{n+1},x)\bigr). \end{aligned}$$
(2.13)

By property of ψ, from (2.12) and (2.13) we have

$$ \mathcal{P}m(\zeta _{n},\zeta _{n+1},x)< \mathcal{P}m( \zeta _{n}, \zeta _{n+1},x), $$

which is true.

To prove that \(\{\zeta _{n}\}\) is a Cauchy sequence, let \(k \geq 3\), \(k \in \mathbb{N}\), as the proof for \(k=1,2\) is already done.

Case 1: Let \(k=2m+1\) and \(m\geq 1\). Then by (iii) of Definition 1.3

$$\begin{aligned} \mathcal{P}m(\zeta _{n},\zeta _{n+k},x) =& \mathcal{P}m(\zeta _{n}, \zeta _{n+2m+1},x) \\ \leq & \mathcal{P}m(\zeta _{n},\zeta _{n+1},x)+ \mathcal{P}m(\zeta _{n+1}, \zeta _{n+2},x)+\cdots + \mathcal{P}m(\zeta _{n+2m},\zeta _{n+2m+1},x) \\ \leq & \sum_{p=n}^{n+2m} \psi ^{p}\bigl(\mathcal{P}m(\zeta _{0},\zeta _{1},x )\bigr) \\ \leq & \sum_{p=n}^{+\infty } \psi ^{p}\bigl(\mathcal{P}m(\zeta _{0}, \zeta _{1},x )\bigr) \rightarrow 0 \quad \text{as } n\rightarrow \infty . \end{aligned}$$
(2.14)

Case 2: Let \(k=2m\) and \(m\geq 2\). Then by (iii) of Definition 1.3

$$\begin{aligned} \mathcal{P}m(\zeta _{n},\zeta _{n+k},x) =& \mathcal{P}m(\zeta _{n}, \zeta _{n+2m},x) \\ \leq & \mathcal{P}m(\zeta _{n},\zeta _{n+2},x)+ \mathcal{P}m(\zeta _{n+2}, \zeta _{n+3},x)+\cdots + \mathcal{P}m(\zeta _{n+2m-1},\zeta _{n+2m},x) \\ \leq & \mathcal{P}m(\zeta _{n},\zeta _{n+2},x)+\sum _{p=n+2}^{n+2m-1} \psi ^{p}\bigl( \mathcal{P}m(\zeta _{0},\zeta _{1},x )\bigr) \\ \leq & \mathcal{P}m(\zeta _{n},\zeta _{n+2},x)+\sum _{p=n}^{+\infty } \psi ^{p}\bigl( \mathcal{P}m(\zeta _{0},\zeta _{1},x )\bigr) \rightarrow 0 \quad \text{as } n\rightarrow \infty . \end{aligned}$$
(2.15)

Since \(\lim_{n\rightarrow \infty } a_{n}=0\) because of (2.9), in both cases above, we have \(\lim_{n\rightarrow \infty } \mathcal{P}m(\zeta _{n},\zeta _{n+k}, x)=0\) for all \(k\geq 3\). This shows that \(\{\zeta _{n}\}\) is a Cauchy sequence in \((\Omega ,d)\). By the completeness of \((\Omega ,d)\) we have \(\zeta ^{*} \in \Omega \) satisfying

$$ \lim_{n\rightarrow \infty } \mathcal{P}m\bigl(\zeta _{n},\zeta ^{*},x\bigr)=0. $$
(2.16)

Since C is a continuous function, from (2.16) we get

$$ \lim_{n\rightarrow \infty } \mathcal{P}m\bigl(C\zeta _{n},C\zeta ^{*},x\bigr)= \lim_{n\rightarrow \infty } \mathcal{P}m\bigl(\zeta _{n+1},C\zeta ^{*},x\bigr)=0. $$

By Proposition 1.8, \(\zeta ^{*}=C\zeta ^{*}\), and hence C has a fixed point \(\zeta ^{*}\).

Next, considering regular Ω, there exists a subsequence \(\{\zeta _{n_{k}}\}\) of \(\{\zeta _{n}\}\) satisfying \(\alpha (\zeta _{n_{k}-1}, \zeta ^{*},x)\geq 1\) for all \(k \in \mathbb{N}\). From (2.1) with \(\zeta =\zeta _{n_{k}}\) and \(\eta =\zeta ^{*}\) we have

$$\begin{aligned} \mathcal{P}m\bigl(\zeta _{n_{k}+1},C\zeta ^{*},x\bigr) =& \mathcal{P}m\bigl(C\zeta _{n_{k}},C \zeta ^{*},x\bigr) \\ \leq & \alpha \bigl(\zeta _{n_{k}},\zeta ^{*},x\bigr) \mathcal{P}m\bigl(C\zeta _{n_{k}},C \zeta ^{*},x\bigr) \\ \leq & \psi \Bigl(\prod \bigl(\zeta _{n_{k}},\zeta ^{*},x \bigr)\Bigr), \end{aligned}$$
(2.17)

where

$$\begin{aligned} &\prod \bigl(\zeta _{n_{k}},\zeta ^{*},x\bigr) \end{aligned}$$
(2.18)
$$\begin{aligned} &\quad = \max \biggl\{ \mathcal{P}m\bigl( \zeta _{n_{k}},\zeta ^{*},x\bigr),\mathcal{P}m(\zeta _{n_{k}},C\zeta _{n_{k}},x), \mathcal{P}m\bigl(\zeta ^{*},C\zeta ^{*},x\bigr), \\ &\qquad \frac{\mathcal{P}m(\zeta _{n_{k}},C\zeta _{n_{k}},x)\mathcal{P}m(\zeta ^{*},C\zeta ^{*},x)}{1+\mathcal{P}m(\zeta _{n_{k}},\zeta ^{*},x)}, \frac{\mathcal{P}m(\zeta _{n_{k}},C\zeta _{n_{k}},x)\mathcal{P}m(\zeta ^{*},C\zeta ^{*},x)}{1+\mathcal{P}m(C\zeta _{n_{k}},C\zeta ^{*},x)} \biggr\} \\ &\quad = \max \biggl\{ \mathcal{P}m\bigl(\zeta _{n_{k}},\zeta ^{*},x\bigr),\mathcal{P}m( \zeta _{n_{k}},\zeta _{n_{k}+1},x),\mathcal{P}m\bigl(\zeta ^{*},T\zeta ^{*},x\bigr) \\ &\qquad \frac{\mathcal{P}m(\zeta _{n_{k}},C\zeta _{n_{k}+1},x)\mathcal{P}m(\zeta ^{*},C\zeta ^{*},x)}{1+\mathcal{P}m(\zeta _{n_{k}},\zeta ^{*},x)}, \frac{\mathcal{P}m(\zeta _{n_{k}},\zeta _{n_{k}+1},x)\mathcal{P}m(\zeta ^{*},C\zeta ^{*},x)}{1+\mathcal{P}m(\zeta _{n_{k}+1},C\zeta ^{*},x)} \biggr\} . \end{aligned}$$
(2.19)

Taking the limit as \(k\rightarrow \infty \) in (2.19), we get \(\prod (\zeta _{n_{k}},\zeta ^{*},x)=P(\zeta ^{*},C\zeta ^{*},x)\). Taking the limit as \(k\rightarrow \infty \) in inequality (2.17), we get

$$ \mathcal{P}m\bigl(\zeta ^{*},C\zeta ^{*},x\bigr)\leq \psi \bigl(\mathcal{P}m\bigl(\zeta ^{*},C \zeta ^{*},x \bigr)\bigr)\leq \mathcal{P}m\bigl(\zeta ^{*},C\zeta ^{*},x\bigr), $$

which implies \(\zeta ^{*}=C\zeta ^{*}\), that is, C has a fixed point \(\zeta ^{*}\).

Suppose \(\zeta ^{*}\) and \(\eta ^{*}\) are two fixed points of C and \(\zeta ^{*}\neq \eta ^{*}\). Then \(\alpha (\zeta ^{*},\eta ^{*},x)\geq 1\). Taking \(\zeta =\zeta ^{*}\) and \(\eta =\eta ^{*}\) in (2.1), we get

$$\begin{aligned} \mathcal{P}m\bigl(\zeta ^{*},\eta ^{*},x\bigr) =& \mathcal{P}m\bigl(C\zeta ^{*},C \eta ^{*},x\bigr) \\ \leq & \alpha \bigl(\zeta ^{*},\eta ^{*},x\bigr) \mathcal{P}m\bigl(T\zeta ^{*},C \eta ^{*},x\bigr) \\ \leq & \psi \Bigl(\prod \bigl(\zeta ^{*},\eta ^{*},x\bigr)\Bigr), \end{aligned}$$

where

$$\begin{aligned} \prod \bigl(\zeta ^{*},\eta ^{*},x\bigr) =& \max \biggl\{ \mathcal{P}m\bigl(\zeta ^{*}, \eta ^{*},x\bigr),\mathcal{P}m\bigl(\zeta ^{*},C\zeta ^{*},x\bigr),\mathcal{P}m\bigl( \eta ^{*},C\eta ^{*},x\bigr), \\ & \frac{\mathcal{P}m(\zeta ^{*},C\zeta ^{*},x)\mathcal{P}m(\eta ^{*},C\eta ^{*},x)}{1+\mathcal{P}m(\zeta ^{*},\zeta ^{*},x)}, \frac{\mathcal{P}m(\zeta ^{*},C\zeta ^{*},x)\mathcal{P}m(\eta {*},C\eta ^{*},x)}{1+\mathcal{P}m(C\zeta ^{*},C\eta ^{*},x)} \biggr\} \\ =& \mathcal{P}m\bigl(\zeta ^{*},\eta ^{*},x\bigr). \end{aligned}$$
(2.20)

Hence we get \(\mathcal{P}m(\zeta ^{*},\eta ^{*},x)\leq \psi (\mathcal{P}m(\zeta ^{*}, \eta ^{*},x))< \mathcal{P}m(\zeta ^{*},\eta ^{*},x)\), which is possible only if \(\mathcal{P}m(\zeta ^{*},\eta ^{*},x)=0\), that is, \(\zeta ^{*}=\eta ^{*}\). So, a fixed point of C is unique. □

Definition 2.3

Let \((\Omega ,\mathcal{P}m)\) be a generalized parametric metric space, and let \(C:\Omega \rightarrow \Omega \) and \(\alpha : \Omega \times \Omega \times (0,+\infty ) \rightarrow [0, + \infty )\). We say that C is an \((\alpha ,\psi )\)-rational contractive mapping of type-II if for all \(\zeta ,\eta \in \Omega \) and \(\psi \in \Psi \),

$$ \alpha (\zeta ,\eta ,x)P(C\zeta ,C\eta ,x)\leq \psi \Bigl(\prod (\zeta , \eta ,x)\Bigr), $$
(2.21)

where

$$\begin{aligned} \prod (\zeta ,\eta ,x) =& \max \biggl\{ \mathcal{P}m(\zeta ,\eta ,x), \mathcal{P}m(\zeta ,C\zeta ,x),\mathcal{P}m(\eta ,C\eta ,x), \\ & \frac{\mathcal{P}m(\zeta ,C\zeta ,x)\mathcal{P}m(\eta ,C\eta ,x)}{1+\mathcal{P}m(\zeta ,\eta ,x) +\mathcal{P}m(\zeta ,C\eta ,x)+\mathcal{P}m(\eta ,C\zeta ,x)}, \\ & \frac{\mathcal{P}m(\zeta ,C\eta ,x)\mathcal{P}m(\zeta ,\eta ,x)}{1+\mathcal{P}m(\zeta ,C\zeta ,x) +\mathcal{P}m(\eta ,C\zeta ,x)+\mathcal{P}m(\eta ,C\eta ,x)} \biggr\} . \end{aligned}$$

Theorem 2.4

Let \((\Omega ,\mathcal{P}m)\) be a generalized parametric metric space, and let \(C:\Omega \rightarrow \Omega \) and \(\alpha : \Omega \times \Omega \times (0,+\infty ) \rightarrow [0, + \infty )\). Let C be an α-admissible mapping satisfying

  1. (i)

    there exists \(\zeta _{0}\in \Omega \) satisfying \(\alpha (\zeta _{0}, C\zeta _{0},x) \geq 1\) and \(\alpha (\zeta _{0},C^{2}\zeta _{0},x)\geq 1\);

  2. (ii)

    C is \((\alpha , \psi )\)-rational contractive mapping of type-II;

  3. (iii)

    C is continuous, or Ω is α-regular.

Then there is a fixed point \(\zeta ^{*} \in \Omega \) of C, and \(\{C^{n}\zeta _{0}\}\) converges to \(\zeta ^{*}\). Further, if \(\alpha (\zeta ,\eta ,x)\geq 1\) for all \(\zeta ,\eta \in F(C)\), then C has a unique fixed point in Ω.

Proof

Following the proof of Theorem 2.2, we can complete the proof. □

Example 2.5

Consider \(\Omega =[0, +\infty )\) and

$$\begin{aligned} \mathcal{P}m(\zeta ,\eta ,x) =& \textstyle\begin{cases} x(\zeta +\eta )^{2}, & \zeta \neq \eta , \\ 0, & \zeta =\eta , \end{cases}\displaystyle \end{aligned}$$

for all \(\zeta ,\eta \in \Omega \) and \(x>0\). Define \(C:\Omega \rightarrow \Omega \) by

$$\begin{aligned} C\zeta =& \textstyle\begin{cases} \frac{1}{8}\zeta ^{2}, & \zeta \in [0,1), \\ \frac{1}{8}\zeta , & \zeta \in [1,2), \\ \frac{1}{32}, & \zeta \in [2,\infty ). \end{cases}\displaystyle \end{aligned}$$

Also, define \(\psi (t)=\frac{t}{2}\) and \(\alpha (\zeta ,\eta ,x)=1\) for \(\zeta ,\eta \in \Omega \) and \(x>0\). Clearly, \((\Omega ,\mathcal{P}m)\) is a complete generalized parametric metric space.

Considering the following:

  1. (i)

    Let \(\zeta ,\eta \in [0,1)\). Then

    $$\begin{aligned} \alpha (\zeta ,\eta ,x)\mathcal{P}m(C\zeta ,C\eta ,x) =& x\biggl( \frac{1}{8}\zeta ^{2}+\frac{1}{8}\eta ^{2}\biggr)^{2}=\frac{1}{64}x\bigl(\zeta ^{2}+ \eta ^{2}\bigr)^{2} \\ \leq & \frac{1}{2}\bigl\{ x(\zeta +\eta )^{2}\bigr\} =\psi \bigl(\mathcal{P}m(\zeta , \eta ,x)\bigr) \\ \leq & \psi \Bigl(\prod (\zeta ,\eta ,x)\Bigr). \end{aligned}$$
  2. (ii)

    Let \(\zeta ,\eta \in [1,2)\) with \(\zeta \leq \eta \). Then

    $$\begin{aligned} \alpha (\zeta ,\eta ,x)\mathcal{P}m(C\zeta ,C\eta ,x) =& x\biggl( \frac{1}{8}\zeta +\frac{1}{8}\eta \biggr)^{2}= \frac{1}{64}x(\zeta +\eta )^{2} \\ \leq & \frac{1}{2}x(\zeta +\eta )^{2}=\psi \bigl( \mathcal{P}m(\zeta , \eta ,x)\bigr) \\ \leq & \psi \Bigl(\prod (\zeta ,\eta ,x)\Bigr). \end{aligned}$$
  3. (iii)

    Let \(\zeta ,\eta \in [2,+\infty )\) with \(\zeta \leq \eta \). Then

    $$\begin{aligned} \alpha (\zeta ,\eta ,x)\mathcal{P}m(C\zeta ,C\eta ,x) =& x\biggl( \frac{1}{32}+\frac{1}{32}\biggr)=\frac{1}{16}x\leq \frac{1}{8}x \\ =& \frac{1}{2}\biggl\{ \frac{1}{4}(1+1)^{2} \biggr\} =\frac{1}{2}\mathcal{P}m( \zeta ,\eta ,x) \\ \leq &\frac{1}{2} \Bigl(\prod (\zeta ,\eta ,x)\Bigr) = \psi \Bigl(\prod (\zeta , \eta ,x)\Bigr). \end{aligned}$$
  4. (iv)

    Let \(\zeta \in [0,1)\) and \(\eta \in [1,2)\) (clearly, \(\zeta \leq \eta \)). Then

    $$\begin{aligned} \alpha (\zeta ,\eta ,x)\mathcal{P}m(C\zeta ,C\eta ,x) =& x\biggl( \frac{1}{8}\zeta ^{2}+\frac{1}{8}\eta \biggr)^{2} \\ \leq &x\biggl(\frac{1}{8}\zeta ^{2}+\frac{1}{8} \eta ^{2}\biggr)^{2}=\frac{1}{64}x\bigl( \zeta ^{2}+\eta ^{2}\bigr)^{2} \\ \leq & \frac{1}{2}\bigl\{ x(\zeta +\eta )^{2}\bigr\} =\psi \bigl(\mathcal{P}m(\zeta , \eta ,x)\bigr) \\ \leq &\frac{1}{2}\Bigl(\prod (\zeta ,\eta ,x)\Bigr)= \psi \Bigl(\prod (\zeta ,\eta ,x)\Bigr). \end{aligned}$$
  5. (v)

    Let \(\zeta \in [0,1)\) and \(\eta \in [2,+\infty )\) (clearly, \(\zeta \leq \eta \)). Then

    $$\begin{aligned} \alpha (\zeta ,\eta ,x)\mathcal{P}m(C\zeta ,C\eta ,x) =& x\biggl( \frac{1}{8}\zeta ^{2}+\frac{1}{32} \biggr)^{2} \\ \leq & x\biggl(\frac{1}{8}\zeta +\frac{1}{8}\eta \biggr)^{2}=\frac{1}{64}x( \zeta +\eta )^{2} \\ \leq & \frac{1}{2}x(\zeta +\eta )^{2}= \frac{1}{2}\bigl(\mathcal{P}m( \zeta ,\eta ,x)\bigr) \\ \leq &\frac{1}{2}\Bigl(\prod (\zeta ,\eta ,x)\Bigr)= \psi \Bigl(\prod (\zeta ,\eta ,x)\Bigr). \end{aligned}$$
  6. (vi)

    Let \(\zeta \in [0,1)\) and \(\eta \in [2,+\infty )\) (clearly, \(\zeta \leq \eta \)). Then

    $$\begin{aligned} \alpha (\zeta ,\eta ,x)\mathcal{P}m(C\zeta ,C\eta ,x) =& x\biggl( \frac{1}{8}\zeta +\frac{1}{32}\biggr)^{2} \\ \leq & x\biggl(\frac{1}{8}\zeta +\frac{1}{8}\eta \biggr)^{2}=\frac{1}{64}x( \zeta +\eta )^{2} \\ \leq & \frac{1}{2}x(\zeta +\eta )^{2}= \frac{1}{2}\bigl(\mathcal{P}m( \zeta ,\eta ,x)\bigr) \\ \leq &\frac{1}{2}\Bigl(\prod (\zeta ,\eta ,x)\Bigr)= \psi \Bigl(\prod (\zeta ,\eta ,x)\Bigr). \end{aligned}$$

Therefore

$$ \alpha (\zeta ,\eta ,x)\mathcal{P}m(C\zeta ,C\eta ,x)\leq \psi \Bigl( \prod (\zeta ,\eta ,x)\Bigr) $$

for all \(\zeta ,\eta \in \Omega \) with \(\zeta \leq \eta \) and all \(x>0\). Hence all the conditions of Theorem 2.2 hold, and C has a unique fixed point.

3 Consequences

Here we derive various results in the literature as corollaries for generalized parametric metric spaces. In particular, we deduce the results of Aydi et al. [30] and Karapinar [31]. Now we give the following definitions.

Definition 3.1

Let \((\Omega ,\mathcal{P}m)\) be a generalized parametric metric space, and let \(C:\Omega \rightarrow \Omega \) and \(\alpha : \Omega \times \Omega \times (0,+\infty ) \rightarrow [0, + \infty )\). We call C a generalized \((\alpha ,\psi )\)- contractive mapping of type I if for all \(\zeta ,\eta \in \Omega \) and \(\psi \in \Psi \),

$$\begin{aligned} \alpha (\zeta ,\eta ,x)\mathcal{P}m(C\zeta ,C\eta ,x) \leq & \psi \Bigl( \prod (\zeta ,\eta ,x)\Bigr), \quad x > 0, \end{aligned}$$
(3.1)

where

$$\begin{aligned} \prod (\zeta ,\eta ,x) =& \max \bigl\{ \mathcal{P}m(\zeta ,\eta ,x), \mathcal{P}m(\zeta ,C\zeta ,x),\mathcal{P}m(\eta ,C \eta ,x)\bigr\} . \end{aligned}$$
(3.2)

Definition 3.2

Let \((\Omega ,\mathcal{P}m)\) be a generalized parametric metric space, and let \(C:\Omega \rightarrow \Omega \) and \(\alpha : \Omega \times \Omega \times (0,+\infty ) \rightarrow [0, + \infty )\) be mappings. We call C a generalized \((\alpha ,\psi )\)- contractive mapping of type-II if for all \(\zeta ,\eta \in \Omega \) and \(\psi \in \Psi \),

$$\begin{aligned} \alpha (\zeta ,\eta ,x)\mathcal{P}m(C\zeta ,C\eta ,x) \leq & \psi \bigl(N( \zeta ,\eta ,x)\bigr),\quad x > 0, \end{aligned}$$
(3.3)

where

$$\begin{aligned} N(\zeta ,\eta ,x) =& \max \biggl\{ \mathcal{P}m( \zeta ,\eta ,x), \frac{\mathcal{P}m(\zeta ,C\zeta ,x),\mathcal{P}m(\eta ,C\eta ,x)}{2} \biggr\} . \end{aligned}$$
(3.4)

Now we state following theorem as a consequence of our Theorem 2.2, which extends the main results of Aydi et al. [30] (Theorems 15 and 17) and Karapinar [31] to the more general setting of generalized parametric metric spaces.

Theorem 3.3

Let \((\Omega ,\mathcal{P}m)\) be a generalized parametric metric space, and let \(C:\Omega \rightarrow \Omega \) and \(\alpha : \Omega \times \Omega \times (0,+\infty ) \rightarrow [0, + \infty )\). Let C be an α-admissible mapping satisfying

  1. (i)

    there exists \(\zeta _{0} \in \Omega \) satisfying \(\alpha (\zeta _{0},C\zeta _{0},x) \geq 1\) and \(\alpha (\zeta _{0},C^{2}\zeta _{0},x) \geq 1\);

  2. (ii)

    C is a generalized \((\alpha , \psi )\)-contractive mapping of type I;

  3. (iii)

    C is continuous, or Ω is α-regular.

Then there exists μ in Ω satisfying \(C\mu =\mu \).

Theorem 3.4

(see [30], Theorems 16 and 18)

Let \((\Omega ,\mathcal{P}m)\) be a generalized parametric metric space, and let \(C:\Omega \rightarrow \Omega \) and \(\alpha : \Omega \times \Omega \times (0,+\infty ) \rightarrow [0, + \infty )\). Let C be an α-admissible mapping satisfying

  1. (i)

    there exists \(\zeta _{0}\in \Omega \) satisfying \(\alpha (\zeta _{0},C\zeta _{0},x)\geq 1\) and \(\alpha (\zeta _{0},C^{2}\zeta _{0},x)\geq 1\);

  2. (ii)

    C is a generalized \((\alpha ,\psi )\)-contractive mapping of type II;

  3. (iii)

    C is continuous or Ω is α-regular.

Then there exists μ in Ω satisfying \(C\mu =\mu \).

Replace the continuity condition by “if \(\{x_{n}\}\) is a sequence in Ω such that \(\alpha (x_{n},x_{n+1})\geq 1\) for all n and \(x_{n}\rightarrow x\in \Omega \) as \(n\rightarrow \infty \), then there exists a subsequence \(\{x_{n(k)}\}\) of \(\{x_{n}\}\) such that \(\alpha (x_{n_{k}},x)\geq 1\), for all k”. Then Theorem 3.3 remains true.

Corollary 3.5

Let \((\Omega ,\mathcal{P}m)\) be a generalized parametric metric space, and let \(C:\Omega \rightarrow \Omega \) and \(\alpha : \Omega \times \Omega \times (0,+\infty ) \rightarrow [0, + \infty )\). Let \(\psi \in \Psi \) be a function such that

$$ \mathcal{P}m(C\zeta ,C\eta ,x)\le \psi \Bigl(\prod (\zeta ,\eta ,x) \Bigr),\quad x > 0, $$

for all \(\zeta ,\eta \in \Omega \). Then there exists a unique fixed point in C.

Proof

Take \(\alpha (\zeta ,\eta ,x)=1\) in the proof of Theorem 2.2.

By taking \(\psi (s)=\lambda s\), in Corollary 3.5, we have □

Corollary 3.6

Let \((\Omega ,\mathcal{P}m)\) be a generalized parametric metric space, and let \(C:\Omega \rightarrow \Omega \) and \(\alpha : \Omega \times \Omega \times (0,+\infty ) \rightarrow [0, + \infty )\). Let \(\psi \in \Psi \) be a function such that

$$ \mathcal{P}m(C\zeta ,C\eta ,x)\le \lambda \prod (\zeta ,\eta ,x) $$

for all \(\zeta ,\eta \in \Omega \) and \(x>0\). Then there exists a unique fixed point for C.

Definition 3.7

Define a partially ordered set \((\Omega ,\preceq )\) and a mapping \(C:\Omega \rightarrow \Omega \). We say that with respect to ⪯, C is nondecreasing if \(\zeta ,\eta \in \Omega \) with \(\zeta \preceq \eta \) implies \(C\zeta \preceq C\eta \). A sequence \(\zeta _{n}\in \Omega \) is called nondecreasing with respect to ⪯ if \(\zeta _{n}\preceq \zeta _{n+1}\) for all n.

Definition 3.8

Let \((\Omega ,\mathcal{P}m)\) be a generalized parametric metric space, let \(C:\Omega \rightarrow \Omega \), and let \((\Omega ,\preceq )\) be a partially ordered set. We say that \((\Omega ,\preceq ,\mathcal{P}m)\) is regular if for every nondecreasing sequence \(\zeta _{n}\in \Omega \) such that \(\zeta _{n}\) converges to \(\zeta \in \Omega \) as \(n\rightarrow \infty \), there exists a subsequence \({\zeta _{n_{k}}}\) of \({\zeta _{n}}\) satisfying \(\zeta _{n_{k}}\preceq \zeta \) for all k.

Corollary 3.9

Let \((\Omega ,\mathcal{P}m)\) be a generalized parametric metric space, and let \(C:\Omega \rightarrow \Omega \) and \(\alpha : \Omega \times \Omega \times (0,+\infty ) \rightarrow [0, + \infty )\). Let \((\Omega ,\preceq )\) be a partially ordered set and suppose \((\Omega ,\mathcal{P}m)\) is complete. Let C be a nondecreasing mapping with respect to ⪯. Let \(\psi \in \Psi \) be a function satisfying

$$ \mathcal{P}m(C\zeta ,C\eta ,x)\le \psi \Bigl(\prod (\zeta ,\eta ,x) \Bigr),\quad x > 0, $$

for all \(\zeta ,\eta \in \Omega \) with \(\zeta \preceq \eta \). Also assume that the following conditions are satisfied.

  1. (i)

    there exists \(\zeta _{0}\in \Omega \) satisfying \(\zeta _{0}\preceq C\zeta _{0}\) and \(\zeta _{0}\preceq C^{2}\zeta _{0}\);

  2. (ii)

    C is continuous, or \((\Omega ,\preceq ,\mathcal{P}m)\) is regular.

Then there exists a fixed point for C.

Proof

Let \(\alpha :\Omega \times \Omega \times (0,+\infty )\rightarrow [0,+ \infty )\) be defined by \(\alpha (\zeta ,\eta ,x)=1\) for \(x>0\) if \(\zeta \preceq \eta \) or \(\zeta \succeq \eta \) and \(\alpha (\zeta ,\eta ,x)=0\) otherwise. As the conditions of Theorem 2.2 are satisfied, a fixed point of C exists. □

4 Generalised fuzzy metric space

Here we establish relations of a generalized parametric metric space and a generalized fuzzy metric space.

Definition 4.1

([32])

Let \(\ast : [0,1]\times [0,1]\rightarrow [0,1]\) be a binary operation that is commutative and associative. ∗ is called a continuous t-norm if

  1. (i)

    ∗ is continuous;

  2. (ii)

    for all \(p\in [0,1]\), \(p\ast 1=p\);

  3. (iii)

    If \(p\leq r\), \(q\leq s\), then \(p\ast q \leq r\ast s\), where \(p,q,r,s \in [0,1]\).

Definition 4.2

([2])

Let Ω be an arbitrary set, let ∗ be a continuous t-norm, and let ∏ be a fuzzy set on \(\Omega ^{2}\times (0,+\infty )\). The triple \((\Omega ,\prod ,\ast )\) is called a fuzzy metric space if

  1. (i)

    \(\prod (\zeta ,\eta ,t)>0\);

  2. (ii)

    \(\prod (\zeta ,\eta ,t)=1\) for all \(t>0\) if and only if \(\zeta =\eta \);

  3. (iii)

    \(\prod (\zeta ,\eta ,t)=\prod (\eta ,\zeta ,t)\);

  4. (iv)

    \(\prod (\zeta ,\eta ,t)\ast \prod (\eta ,\xi ,u)\leq \prod (\zeta , \xi , t+u)\);

  5. (v)

    \(\prod (\zeta ,\eta ,.):(0,+\infty )\rightarrow [0,1]\) is continuous.

for all \(\zeta ,\eta ,\xi \in \Omega \) and \(t,u > 0\); \(\prod (\zeta ,\eta ,t)\) expresses the rate of nearness of ζ and η with respect to t.

Definition 4.3

Let Ω be a nonempty set, let ∗ be a continuous t-norm, and let Δ be a fuzzy set on \(\Omega \times \Omega \times (0,+\infty )\). Then the triple \((\Omega ,\Delta ,\ast )\) is called a generalized fuzzy metric space if it satisfies

  1. (i)

    \(\Delta (\zeta ,\eta ,t)>0\);

  2. (ii)

    \(\Delta (\zeta ,\eta ,t)=1\) if and only if \(\zeta =\eta \);

  3. (iii)

    \(\Delta (\zeta ,\eta ,t)=\Delta (\eta ,\zeta ,t)\);

  4. (iv)

    \(\Delta (\zeta ,\mu ,u)\ast \Delta (\mu ,\lambda ,v)\ast \Delta ( \lambda ,\eta ,t)\leq \Delta (\zeta ,\zeta , u+v+t)\);

  5. (v)

    \(\Delta (\zeta ,\eta ,.):(0,+\infty )\rightarrow (0,1]\) is left continuous

for all \(\zeta ,\eta \in \Omega \), distinct \(\mu ,\lambda \in \Omega -\{\zeta ,\eta \}\), and \(t,u,v > 0\).

Definition 4.4

Let \((\Omega ,\Delta ,\ast )\) be a generalized fuzzy metric space. Then

  1. (i)

    a sequence \(\{\zeta _{n}\}\) converges to \(\zeta \in \Omega \) if and only if \({\lim_{n \to \infty }}\Delta (\zeta _{n},\zeta ,t)=1\) for all \(t>0\).

  2. (ii)

    a sequence \(\{\zeta _{n}\}\) in Ω is a Cauchy sequence if and only if for all \(\varepsilon \in (0,1)\) and \(t>0\), there exists \(n_{0}\) such that \(\Delta (\zeta _{n},\zeta _{m},t)>1-\varepsilon \) for all \(m,n\geq n_{0}\),

  3. (iii)

    If every Cauchy sequence converges to some \(\zeta \in \Omega \), then the generalized fuzzy metric space is said to be complete.

Definition 4.5

Let \((\Omega ,\Delta ,\ast )\) be a generalized fuzzy metric space. The a generalized fuzzy metric Δ is said to be rectangular if

$$ \frac{1}{\Delta (\zeta ,\eta ,t)}-1 \leq \frac{1}{\Delta (\zeta ,\mu ,t)}-1+\frac{1}{\Delta (\mu ,\lambda ,t)}-1+ \frac{1}{\Delta (\lambda ,\eta ,t)}-1 $$

for all \(\zeta ,\eta \in \Omega \) and distinct \(\mu ,\lambda \in \Omega -\{\zeta ,\eta \}\) and \(t > 0\).

Example 4.6

Let \((\Omega ,d)\) be a generalized metric space, and let \(\Delta :\Omega \times \Omega \times (0,+\infty ) \rightarrow (0,+ \infty )\) be such that

$$ \Delta (\zeta ,\eta ,t) = \frac{t}{t+d(\zeta ,\eta )}. $$

Let \(p \ast q = \min \{p,q\}\). Then \((\Omega ,\Delta ,\ast )\) is a generalized fuzzy metric space, and Δ is a rectangular fuzzy metric.

Remark 4.7

Note that \(\mathcal{P}m(\zeta ,\eta ,t)=\frac{1}{\Delta (\zeta ,\eta ,t)}-1\) is a generalized parametric metric space, where Δ is a rectangular fuzzy metric.

Definition 4.8

Let \((\Omega ,\Delta ,\ast )\) be a complete generalized fuzzy metric space, let Δ be a rectangular fuzzy metric on Ω, and let \(\alpha :\Omega \times \Omega \times (0,+\infty ) \rightarrow [0,+ \infty )\) and \(C:\Omega \rightarrow \Omega \). The mapping C is said to be an \((\alpha ,\psi )\)-rational contractive mapping of type I if there exists a function \(\psi \in \Psi \) satisfying

$$ \alpha (\zeta ,\eta ,t)\Delta (C\zeta ,C\eta ,t) \leq \psi \Bigl(\prod ( \zeta ,\eta ,t)\Bigr), \quad t>0, $$
(4.1)

where

$$\begin{aligned} \prod (\zeta ,\eta ,t) =&\max \biggl\{ \frac{1}{\Delta (\zeta ,\eta ,t)}-1, \frac{1}{\Delta (\zeta ,C\zeta ,t)}-1, \frac{1}{\Delta (\eta ,C\eta ,t)}-1, \\ & \frac{(\frac{1}{\Delta (\zeta ,C\zeta ,t)}-1)(\frac{1}{\Delta (\eta ,C\eta ,t)}-1)}{\frac{1}{\Delta (\zeta ,\eta ,t)}}, \frac{(\frac{1}{\Delta (\zeta ,C\zeta ,t)}-1)(\frac{1}{\Delta (\eta ,C\eta ,t)}-1)}{\frac{1}{\Delta (C\zeta ,C\eta ,t)}} \biggr\} \end{aligned}$$

for all \(\zeta ,\eta \in \Omega \).

Theorem 4.9

Let \((\Omega ,\Delta ,\ast )\) be a complete generalized fuzzy metric space, let Δ be a rectangular fuzzy metric on Ω. Suppose that mappings \(\alpha :\Omega \times \Omega \times (0,+\infty ) \rightarrow [0,+ \infty )\) and \(C:\Omega \rightarrow \Omega \) satisfy

  1. (i)

    C is α-admissible;

  2. (ii)

    C is \((\alpha ,\psi )\)-rational contractive mapping of type I;

  3. (iii)

    there exists \(\zeta _{0}\in X\) satisfying \(\alpha (\zeta _{0},C\zeta _{0},t)\geq 1\) and \(\alpha (\zeta _{0},C^{2}\zeta _{0},t)\geq 1\);

  4. (iv)

    C is continuous, or Ω is α-regular.

Then \(\{C^{n}\zeta _{0}\}\) converges to a fixed point \(\zeta ^{*} \in \Omega \) of C. Also, if for all \(\zeta ,\eta \in F(C)\), we have \(\alpha (\zeta ,\eta ,t) \geq 1\), \(t > 0\), then the fixed point of C in Ω is unique.

Definition 4.10

Let \((\Omega ,\Delta ,\ast )\) be a complete generalized fuzzy metric space, let Δ be a triangular fuzzy metric on Ω, and let \(\alpha :\Omega \times \Omega \times (0,+\infty ) \rightarrow [0,+ \infty )\) and \(C:\Omega \rightarrow \Omega \). The mapping C is said to be an \((\alpha , \psi )\)-rational contractive mapping of type II if there exists a function \(\psi \in \Psi \) such that

$$ \alpha (\zeta ,\eta ,t)\Delta (C\zeta ,C\eta ,t)\leq \psi \Bigl(\prod ( \zeta ,\eta ,t)\Bigr)\quad t > 0, $$
(4.2)

where

$$\begin{aligned} \prod (\zeta ,\eta ,t) =& \max \biggl\{ \frac{1}{\Delta (\zeta ,\eta ,t)}-1, \frac{1}{\Delta (\zeta ,C\zeta ,t)}-1, \frac{1}{\Delta (\eta ,C\eta ,t)}-1, \\ & \frac{(\frac{1}{\Delta (\zeta ,C\zeta ,t)}-1)(\frac{1}{\Delta (\eta ,C\eta ,t)}-1)}{\frac{1}{\Delta (\zeta ,\eta ,t)} +\frac{1}{\Delta (\zeta ,C\eta ,t)}+\frac{1}{\Delta (\eta ,C\zeta ,t)}-2}, \frac{(\frac{1}{\Delta (\zeta ,C\eta ,t)}-1)(\frac{1}{\Delta (\zeta ,\eta ,t)}-1)}{\frac{1}{\Delta (\zeta ,C\zeta ,t)} +\frac{1}{\Delta (\eta ,C\zeta ,t)}+\frac{1}{\Delta (\eta ,C\eta ,t)}-2} \biggr\} . \end{aligned}$$

Theorem 4.11

Let \((\Omega ,\Delta ,\ast )\) be a complete generalized fuzzy metric space, let Δ be a triangular fuzzy metric on Ω. Suppose that mappings \(\alpha :\Omega \times \Omega \times (0,+\infty ) \rightarrow [0,+ \infty )\) and \(C:\Omega \rightarrow \Omega \) satisfy

  1. (i)

    C is α-admissible;

  2. (ii)

    C is an \((\alpha , \psi )\)-rational contractive mapping of typeII;

  3. (iii)

    there exists \(\zeta _{0}\in \Omega \) satisfying \(\alpha (\zeta _{0}, C\zeta _{0},t) \geq 1\) and \(\alpha (\zeta _{0},C^{2}\zeta _{0},t)\geq 1\);

  4. (iv)

    C is continuous, or Ω is α-regular.

Then \(\{C^{n}\zeta _{0}\}\) converges to a fixed point \(\zeta ^{*}\in \Omega \) of C Also, if for all \(\zeta ,\eta \in F(C)\), we have \(\alpha (\zeta ,\eta ,t)\geq 1\), \(t > 0\), then the fixed point of C in Ω is unique.

Remark 4.12

We can obtain results similar to Corollary 3.9 for fuzzy partially ordered generalized metric spaces.