1 Preliminaries

Although there are many different works in the field of fractional calculus via many applications (see, for example, [112]), some researchers like to focus on some famous differential equations. One of the well-known differential equations is the Sturm–Liouville, and so far many researchers have studied the equation. Up to now, distinct fractional differential equations and especially different versions of the Strum–Liouville equation have been reviewed (see, for example, [1328]). On the other hand, some phenomena could be described by singular differential equations. For this reason, some researchers have tried to study different singular equations.

In 2015, the fractional problem \({}^{c}\mathcal{D}^{\alpha }x(t)=f(t,x(t), \mathcal{D}^{\beta }x(t))\) with boundary value conditions \(x(0)+x'(0)=y(x)\), \(\int _{0}^{1} x(t) \,dt=m\) and \(x''(0)=x^{(3)}=\cdots =x^{(n-1)}(0)=0\) was investigated, where \(0< t<1\), m is a real number, \(n\geq 2\), \(\alpha \in (n-1,n)\), \(0< \beta <1\), \(\mathcal{D}^{\alpha }\) and \(\mathcal{D}^{\beta }\) are the Caputo fractional derivatives, \(y \in C([0,1], \mathbb{R})\) and \(f: (0,1] \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}\) is continuous with \(f(t,x,y)\) may be singular at \(t=0\) [29]. In 2019, the fractional Sturm–Liouville differential equation \(\mathcal{D}^{\alpha }(\rho (t) \mathcal{D}^{\beta } y'(t) ) + \theta (t) y(t)= h(t) \kappa (y(t))\) with boundary conditions \(y'(0)=0\) and \(\sum_{k=1}^{m} \xi _{k} y(a_{k})= y \sum_{i=1}^{n} \eta _{j} y(b_{j})\) was considered, where \(\alpha \in (0, 1]\), \(\rho (t) \in C^{1}(J, \mathbb{R})\), and \(\theta (t)\) and \(h(t)\) are absolute continuous functions on \(\mathcal{J} = [0,\mathcal{T}]\), \(\mathcal{T} < \infty \) with \(\rho (t) \neq 0\) for all \(t \in \mathcal{J}\); \(\kappa (y(t)): \mathbb{R} \to \mathbb{R}\) is defined and differentiable on the interval \(\mathcal{J}\), \(0 \leq a_{1} < \cdots< a_{m} <c\), \(d \leq b_{1} < b_{2} < \cdots < b_{n} \leq \mathcal{T}\) and \(\xi _{k}\), \(\eta _{j}\) and \(v \in \mathbb{R}\) [14]. The hybrid version of this problem has been studied recently in [13]. From the background of the research, it became clear to us that there are different methods for solving weakly singular equations, but generally these methods are not able to solve the strongly singular case (see [30, 31]). Thus, it is very important to study the strong singular fractional differential equations with new techniques [32]. Therefore, considering the existing gap, we intend to introduce a new method for solving strongly singular equations in this research, which has not been presented so far. Regarding the main idea of the works, we examine the existence of solutions for the strong singular pointwisely defined fractional Sturm–Liouville differential equation

$$ \mathcal{D}^{\alpha }\bigl(p(t) \mathcal{D}^{\beta } \nu (t) \bigr) + q(t) \nu (t)= h(t) f\bigl(\nu (t)\bigr) $$
(1)

with boundary conditions \(\nu ^{(i)}(0)=\mathcal{D}^{(\beta +j)} \nu (0)=0\) for \(0 \leq j \leq n-1\), \(0 \leq i \leq k-1\), and \(a\nu (\mu )= \sum_{i=1}^{n_{0}} \lambda _{i} \mathcal{I}^{p_{i}} \nu (a_{i})\), where \(\alpha \geq 1\), \(\alpha \in (n-1,n]\), \(\beta \in (k-1,k]\), \(\mu , a_{i} \in [0,1]\), \(a, \lambda _{i} \in \mathbb{R}\), \(p_{i} \geq 0\), \(q,h:[0,1] \to \mathbb{R}\) are singular at some points \([0,1]\), \(p: [0,1] \to [0, \infty )\) is \(n-1\) times differentiable and can be zero at some points in \([0,1]\), \(\mathcal{D}^{\beta }\) is the Caputo derivative of fractional order β, and \(\mathcal{I}^{p_{i}}\) is the Riemann–Liouville integral of fractional order \(p_{i}\).

By carefully checking the used techniques in related works, we find that equation (1) is singular at \(t_{0} \in [0,1]\) whenever \(p(t_{0})=0\) or q or h is singular at the point \(t_{0}\). Problem (1) is strong singular at the point \(t_{0}\) whenever at least one of the functions \(\frac{1}{p(t)}\) or \(q(t)\) or \(h(t)\) is singular at the point \(t_{0}\), but is not integrable on the interval \([0,1]\). In this article, we use \(\|\cdot\|_{1}\) for the norm of \(L ^{1} [0,1]\) and \(\|\cdot\|\) for the sup norm of \(X=C[0,1]\).

The Riemann–Liouville integral of fractional order υ with the lower limit \(s \geq 0\) for a function \(g:(s,\infty )\rightarrow \mathbb{R} \) is defined by \(\mathcal{I}^{\upsilon }_{s^{+}}g(t)=\frac{1}{\Gamma (\upsilon )} \int _{s}^{t} (t-\zeta )^{\upsilon -1} g(\zeta )\,d\zeta \) provided that the right-hand side is pointwisely defined on \((s,\infty )\). We denote \(\mathcal{I}^{\upsilon }g(t)\) for \(\mathcal{I}^{\upsilon }_{0^{+}}g(t)\) [33]. Also, the Caputo fractional derivative of order \(\alpha >0\) of the function g is defined by \({}^{c} \mathcal{D}^{q}g(t)=\frac{1}{\Gamma (m-q)}\int _{0}^{t} \frac{g^{m}(\zeta )}{(t-\zeta )^{q+1-m}}\,d\zeta \), where \(m=[q]+1\) [33]. We need the following two statements to prove our main results.

Lemma 1.1

([34])

Let \(m-1< \sigma \leq m\) and \(\nu \in C(0,1)\). Then \(\mathcal{I}^{\sigma } D^{\sigma }\nu (t)=\nu (t)+ \sum_{i=0}^{m-1} e_{i}t^{i}\) for some real constants \(e_{0},\dots ,e_{m-1}\).

Lemma 1.2

([35])

Let \(\mathcal{C}\) be a closed and convex subset of a Banach space X, Ω be a relatively open subset of \(\mathcal{C}\) with \(0 \in \Omega \), and \(\mathcal{F}:\Omega \to \mathcal{C}\) be a continuous and compact mapping. Then either

  1. i)

    the mapping \(\mathcal{F}\) has a fixed point in Ω̄, or

  2. ii)

    there exist \(y \in \partial \Omega \) and \(\lambda \in (0,1)\) with \(y= \lambda \mathcal{F}y\).

2 Main results

We first provide our key lemma.

Lemma 2.1

Let \(\alpha , \beta \geq 1\), \(\alpha \in [n-1,n)\), \(\beta \in [k-1,k)\), \(\mu , a_{i} \in [0,1]\), \(a, \lambda _{i} \in \mathbb{R}\), \(p_{i} \geq 0\), where \(a \neq \sum_{i=1}^{n_{0}} \frac{\lambda _{i} a_{i}^{p_{i}}}{ \Gamma (\beta +p_{i})}\), \(q,h:[0,1] \to \mathbb{R}\) may be singular at some points in \([0,1]\), \(p: [0,1] \to [0, \infty )\) is \(n-1\) times differentiable and can be zero at some points in \([0,1]\), and \(f \in L^{1}\). Then a map ν is a solution for the equation

$$ \mathcal{D}^{\alpha }\bigl(p(t) \mathcal{D}^{\beta } \nu (t) \bigr) + q(t) \nu (t)= h(t) f\bigl(\nu (t)\bigr), $$

with boundary conditions \(\nu ^{(i)}(0)=\mathcal{D}^{(\beta +j)} \nu (0)=0\) for \(0 \leq j \leq n-1\) and \(0 \leq i \leq k-1\) and \(a\nu (\mu )= \sum_{i=1}^{n_{0}} \lambda _{i} \mathcal{I}^{p_{i}} \nu (a_{i})\) if and only if

$$\begin{aligned} \nu (t) &= \frac{1}{\Gamma (\beta )} \int _{0}^{t} (t-\zeta )^{\beta -1} \frac{ ( B_{\alpha }(\zeta ,\nu (\zeta )) - A_{\alpha }(\zeta ,\nu (\zeta )) )}{p(\zeta )} \,d\zeta \\ &\quad {}+ \sum_{i=1}^{n_{0}} \frac{\lambda _{i}}{\Delta \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} (a_{i} - \zeta )^{\beta +p_{i}-1} \frac{ ( B_{\alpha }(\zeta ,\nu (\zeta )) - A_{\alpha }(\zeta ,\nu (\zeta )) )}{p(\zeta )} \,d\zeta \\ &\quad {}- \frac{a}{\Delta \Gamma (\beta )} \int _{0}^{\mu } (\mu -\zeta )^{ \beta -1} \frac{ ( B_{\alpha }(\zeta ,\nu (\zeta )) - A_{\alpha }(s,\nu (\zeta )) )}{p(\zeta )} \,d\zeta , \end{aligned}$$

where \(\Delta = a - \sum_{i=1}^{n_{0}} \frac{\lambda _{i} a_{i}^{p_{i}}}{ \Gamma (\beta +p_{i})}\), \(A_{\alpha }(\zeta ,\nu (\zeta )) = \frac{1}{\Gamma (\alpha )} \int _{0}^{t} (t-\zeta )^{\alpha -1} q(\zeta ) \nu (\zeta ) \,d\zeta \) and

$$ B_{\alpha }\bigl(\zeta ,\nu (\zeta )\bigr) = \frac{1}{\Gamma (\alpha )} \int _{0}^{t} (t-\zeta )^{\alpha -1} h( \zeta ) f\bigl(\nu (\zeta )\bigr) \,d\zeta . $$

Proof

By using the same strategy in [32], one can find Lemma 1.1 is valid on \(L^{1}[0,1]\). Let \(\nu (t)\) be a solution for the fractional boundary value problem (FBVP). Via Lemma 1.1, there are some real constants \(e_{0},\dots ,e_{n-1}\) such that

$$ p(t) \mathcal{D}^{\beta } \nu (t) = -\mathcal{I}^{\alpha } \bigl(q(t)f\bigl(\nu (t)\bigr)\bigr) +\mathcal{I}^{\alpha }\bigl(q(t)f\bigl( \nu (t)\bigr)\bigr)+ e_{0}+ e_{1} t+ \cdots+ e_{n-1}t^{n-1}. $$

Since \(\mathcal{D}^{\beta } \nu (0)=0\), we get \(e_{0} =0\). Also since \(\frac{d}{dt} ( \mathcal{I}^{\alpha }(q(t)f(\nu (t))) ) = \mathcal{I}^{\alpha -1}(q(t)f(\nu (t)))\), by derivation from the last equality, we have

$$ \bigl( p(t) \mathcal{D}^{\beta } \nu (t) \bigr)'|_{t=0}= - \mathcal{I}^{\alpha -1}\bigl(q(t)f\bigl(\nu (t)\bigr)\bigr) |_{t=0}+\mathcal{I}^{ \alpha -1}\bigl(q(t)f\bigl(\nu (t)\bigr) \bigr)|_{t=0}+ e_{1}. $$

Since \(\mathcal{I}^{\alpha }(q(t)f(\nu (t))) |_{t=0} =0\), it results that \(e_{1}= ( p'(t) \mathcal{D}^{\beta } \nu (t)+p(t) \mathcal{D}^{ \beta +1} \nu (t) ) |_{t=0}\). Thus, \(e_{1}=0\). By continuing this way, one can check that \(e_{2}= \cdots =e_{n-1}=0\) and so

$$ \mathcal{D}^{\beta } \nu (t) = -\frac{1}{p(t) } \mathcal{I}^{\alpha }\bigl(q(t)f\bigl( \nu (t)\bigr)\bigr) + \frac{1}{p(t) } \mathcal{I}^{\alpha }\bigl(q(t)f\bigl(\nu (t)\bigr) \bigr). $$

If

$$ A_{\alpha }\bigl(t,\nu (t)\bigr)= \mathcal{I}^{\alpha }\bigl(q(t)f \bigl(\nu (t)\bigr)\bigr) $$

and

$$ B_{\alpha }\bigl(t,\nu (t)\bigr)= \mathcal{I}^{\alpha }\bigl(q(t)f \bigl(\nu (t)\bigr)\bigr), $$

then it is evolved that

$$ \mathcal{D}^{\beta } \nu (t) = -\frac{A_{\alpha }(t,\nu (t))}{p(t) } + \frac{B_{\alpha }(t,\nu (t))}{p(t) }. $$

Once again for the above equality, by using Lemma 1.1, it is concluded that there are some real constants \(d_{0},\dots ,d_{k-1}\) such that

$$ \nu (t) = -\mathcal{I}^{\beta } \biggl( \frac{A_{\alpha }(t,\nu (t))}{p(t) } \biggr) + \mathcal{I}^{\beta } \biggl( \frac{B_{\alpha }(t,\nu (t))}{p(t) } \biggr) +d_{0} + d_{1} t+ \cdots+ d_{k-1}t^{k-1}. $$

Since \(\nu ^{(i)}(0)=0\) for \(1 \leq i \leq k-1\), we get \(d_{1}=\cdots=d_{k-1}=0\) therefore it is concluded that

$$\begin{aligned} \nu (t) &=- \frac{1}{\Gamma (\beta )} \int _{0}^{t} (t-\zeta )^{ \beta -1} \frac{A_{\alpha }(\zeta ,\nu (\zeta ))}{p(\zeta ) } \,d\zeta \\ &\quad {} + \frac{1}{\Gamma (\beta )} \int _{0}^{t} (t-\zeta )^{\beta -1} \frac{B_{\alpha }(\zeta ,\nu (\zeta ))}{p(\zeta ) } \,d\zeta +d_{0}. \end{aligned}$$
(2)

Hence,

$$\begin{aligned} a \nu (\mu ) &= \frac{-a}{\Gamma (\beta )} \int _{0}^{\mu } (\mu - \zeta )^{\beta -1} \frac{A_{\alpha }(\zeta ,\nu (\zeta ))}{p(\zeta ) } \,d\zeta \\ &\quad {} + \frac{a}{\Gamma (\beta )} \int _{0}^{\mu } (\mu -\zeta )^{\beta -1} \frac{B_{\alpha }(\zeta ,\nu (\zeta ))}{p(\zeta ) } \,d\zeta +d_{0} a \\ &= \frac{a}{\Gamma (\beta )} \int _{0}^{\mu } (\mu -s)^{\beta -1} \frac{ ( B_{\alpha }(\zeta ,\nu (\zeta )) - A_{\alpha }(\zeta ,\nu (\zeta )) )}{p(\zeta ) } \,d\zeta +d_{0} a. \end{aligned}$$

Also, by integration of order \(p_{i}\) from (2), for each \(1 \leq i \leq n_{0}\), we have

$$\begin{aligned} \mathcal{I}^{p_{i}} \nu (t) &=- \frac{1}{\Gamma (\beta + p_{i})} \int _{0}^{t} (t-\zeta )^{\beta + p_{i} -1} \frac{A_{\alpha }(\zeta ,\nu (\zeta ))}{p(s) } \,ds \\ &\quad {} + \frac{1}{\Gamma (\beta + p_{i})} \int _{0}^{t} (t-\zeta )^{\beta + p_{i} -1} \frac{B_{\alpha }(\zeta ,\nu (\zeta ))}{p(\zeta ) } \,d\zeta + \frac{d_{0} t^{p}_{i}}{\Gamma ( p_{i} +1)}, \end{aligned}$$

which implies that

$$\begin{aligned} \sum_{i=1}^{n_{0}} \lambda _{i} \mathcal{I}^{p_{i}} \nu (t) &= - \sum _{i=1}^{n_{0}} \frac{\lambda _{i}}{\Gamma (\beta + p_{i})} \int _{0}^{t} (t-\zeta )^{\beta + p_{i} -1} \frac{A_{\alpha }(\zeta ,\nu (\zeta ))}{p(\zeta ) } \,d\zeta \\ &\quad {}+ \sum_{i=1}^{n_{0}} \frac{\lambda _{i}}{\Gamma (\beta + p_{i})} \int _{0}^{t} (t-\zeta )^{\beta + p_{i} -1} \frac{B_{\alpha }(\zeta ,\nu (\zeta ))}{p(\zeta ) } \,d\zeta +d_{0} \sum _{i=1}^{n_{0}} \frac{ \lambda _{i} t^{p}_{i}}{\Gamma ( p_{i} +1)}. \end{aligned}$$

Thus it results in

$$\begin{aligned} \sum_{i=1}^{n_{0}} \lambda _{i} \mathcal{I}^{p_{i}} \nu (a_{i}) &= - \sum _{i=1}^{n_{0}} \frac{\lambda _{i}}{\Gamma (\beta + p_{i})} \int _{0}^{a_{i}} (a_{i}-\zeta )^{\beta + p_{i} -1} \frac{A_{\alpha }(\zeta ,\nu (\zeta ))}{p(\zeta ) } \,d\zeta \\ &\quad {}+ \sum_{i=1}^{n_{0}} \frac{\lambda _{i}}{\Gamma (\beta + p_{i})} \int _{0}^{a_{i}} (a_{i} -\zeta )^{\beta + p_{i} -1} \frac{B_{\alpha }(\zeta ,\nu (\zeta ))}{p(\zeta ) } \,d\zeta +d_{0} \sum _{i=1}^{n_{0}} \frac{ \lambda _{i} a_{i}^{p_{i}}}{\Gamma ( p_{i} +1)} \\ &= \sum_{i=1}^{n_{0}} \frac{\lambda _{i}}{\Gamma (\beta + p_{i})} \int _{0}^{a_{i}} (a_{i} -\zeta )^{\beta + p_{i} -1} \frac{ ( B_{\alpha }(\zeta ,\nu (\zeta )) - A_{\alpha }(\zeta ,\nu (\zeta )) ) }{p(\zeta ) } \,d\zeta \\ &\quad {}+d_{0} \sum_{i=1}^{n_{0}} \frac{ \lambda _{i} a_{i}^{p_{i}}}{\Gamma ( p_{i} +1)}. \end{aligned}$$

Since \(a \nu (\mu ) = \sum_{i=1}^{n_{0}} \lambda _{i} \mathcal{I}^{p_{i}} \nu (a_{i})\), we obtain

$$\begin{aligned} &\frac{a}{\Gamma (\beta )} \int _{0}^{\mu } (\mu -\zeta )^{\beta -1} \frac{ ( B_{\alpha }(\zeta ,\nu (\zeta )) - A_{\alpha }(\zeta ,\nu (\zeta )) ) }{p(\zeta ) } \,d\zeta +d_{0} a \\ &\quad = \sum_{i=1}^{n_{0}} \frac{\lambda _{i}}{\Gamma (\beta + p_{i})} \int _{0}^{a_{i}} (a_{i} -\zeta )^{\beta + p_{i} -1} \frac{ ( B_{\alpha }(\zeta ,\nu (\zeta )) - A_{\alpha }(\zeta ,\nu (\zeta )) ) }{p(\zeta ) } \,d\zeta \\ &\qquad {}+d_{0} \sum_{i=1}^{n_{0}} \frac{ \lambda _{i} a_{i}^{p_{i}}}{\Gamma ( p_{i} +1)}. \end{aligned}$$

Hence

$$\begin{aligned} & d_{0} \Biggl( a - \sum_{i=1}^{n_{0}} \frac{ \lambda _{i} a_{i}^{p_{i}}}{\Gamma ( p_{i} +1)} \Biggr) \\ &\quad = \sum_{i=1}^{n_{0}} \frac{\lambda _{i}}{\Gamma (\beta + p_{i})} \int _{0}^{a_{i}} (a_{i} -\zeta )^{\beta + p_{i} -1} \frac{ ( B_{\alpha }(\zeta ,\nu (\zeta )) - A_{\alpha }(\zeta ,\nu (\zeta )) ) }{p(\zeta ) } \,d\zeta \\ &\qquad {} - \frac{a}{\Gamma (\beta )} \int _{0}^{\mu } (\mu -\zeta )^{\beta -1} \frac{ ( B_{\alpha }(\zeta ,\nu (\zeta )) - A_{\alpha }(\zeta ,\nu (\zeta )) ) }{p(\zeta ) } \,d\zeta , \end{aligned}$$

and so

$$\begin{aligned} d_{0} &= \sum_{i=1}^{n_{0}} \frac{\lambda _{i}}{ \Delta \Gamma (\beta + p_{i})} \int _{0}^{a_{i}} (a_{i} -\zeta )^{\beta + p_{i} -1} \frac{ ( B_{\alpha }(\zeta , \nu (\zeta )) - A_{\alpha }(\zeta ,\nu (\zeta )) ) }{p(\zeta ) } \,d\zeta \\ &\quad {} - \frac{a}{\Delta \Gamma (\beta )} \int _{0}^{\mu } (\mu -\zeta )^{ \beta -1} \frac{ ( B_{\alpha }(\zeta ,\nu (\zeta )) - A_{\alpha }(\zeta ,\nu (\zeta )) ) }{p(\zeta ) } \,d\zeta , \end{aligned}$$

where \(\Delta = ( a - \sum_{i=1}^{n_{0}} \frac{ \lambda _{i} a_{i}^{p_{i}}}{\Gamma ( p_{i} +1)} )\). This indicates that

$$\begin{aligned} \nu (t) &= \frac{1}{\Gamma (\beta )} \int _{0}^{t} (t-\zeta )^{\beta -1} \frac{ ( B_{\alpha }(s,\nu (\zeta )) - A_{\alpha }(\zeta ,\nu (\zeta )) )}{p(\zeta )} \,d\zeta \\ &\quad {}+ \sum_{i=1}^{n_{0}} \frac{\lambda _{i}}{\Delta \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} (a_{i} - \zeta )^{\beta +p_{i}-1} \frac{ ( B_{\alpha }(\zeta ,\nu (\zeta )) - A_{\alpha }(\zeta ,\nu (\zeta )) )}{p(\zeta )} \,d\zeta \\ &\quad {}- \frac{a}{\Delta \Gamma (\beta )} \int _{0}^{\mu } (\mu -\zeta )^{ \beta -1} \frac{ ( B_{\alpha }(\zeta ,\nu (\zeta )) - A_{\alpha }(\zeta ,\nu (\zeta )) )}{p(\zeta )} \,d\zeta . \end{aligned}$$

One can obtain the other part by using some calculations. This completes the proof. □

Note that the generalized boundary conditions of the Sturm–Liouville problem lead us to attaining a different integral equation to consider. Also, as we have a strong singularity in the problem, we need to investigate the equation by a novel method.

Designate the space \(X= C[0,1]\) with the supremum norm. Define the map \(H : X \to X\) by

$$\begin{aligned} H_{\nu }(t)&= \frac{1}{\Gamma (\beta )} \int _{0}^{t} (t-\zeta )^{ \beta -1} \frac{ ( B_{\alpha }(\zeta ,\nu (\zeta )) - A_{\alpha }(\zeta ,\nu (\zeta )) )}{p(\zeta )} \,d\zeta \\ &\quad {}+ \sum_{i=1}^{n_{0}} \frac{\lambda _{i}}{\Delta \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} (a_{i} - \zeta )^{\beta +p_{i}-1} \frac{ ( B_{\alpha }(\zeta ,\nu (\zeta )) - A_{\alpha }(\zeta ,\nu (\zeta )) )}{p(\zeta )} \,d\zeta \\ &\quad {}- \frac{a}{\Delta \Gamma (\beta )} \int _{0}^{\mu } (\mu -\zeta )^{ \beta -1} \frac{ ( B_{\alpha }(\zeta ,\nu (\zeta )) - A_{\alpha }(\zeta ,\nu (\zeta )) )}{p(\zeta )} \,d\zeta \end{aligned}$$

for all \(t\in [0,1]\). Note that, if \(\nu _{0}\in X\) is a solution for SBVP (1), then \(\nu _{0}\) is a fixed point of the map H. Vice versa, \(\nu _{0}\in X\) is a solution for the problem when \(\nu _{0}\) is a fixed point of the mapping. In the next result, we suppose that the maps \(q,h:[0,1] \to \mathbb{R}\) may be singular at some points in \([0,1]\) and the function \(p: [0,1] \to [0, \infty )\) in equation (1) is \(n-1\) times differentiable but can be zero at some points in \([0,1]\). In the next theorem, using inequalities for controlling singular points by some functions that are called control functions, and by the fixed point method, we will investigate the existence of a solution for the singular fractional differential problem (SFDP).

Theorem 2.2

Assume that \(\alpha , \beta \geq 1\), \(\alpha \in [n-1,n)\), \(\beta \in [k-1,k)\), \(n_{0}\) is a natural number, \(\mu , a_{1},\dots ,a_{n_{0}} \in [0,1]\), \(a, \lambda _{1},\dots ,\lambda _{n_{0}} \in \mathbb{R}\), \(p_{i} \geq 0\) with \(a \neq \sum_{i=1}^{n_{0}} \frac{\lambda _{i} a_{i}^{p_{i}}}{ \Gamma (\beta +p_{i})}\) and \(f: \mathbb{R} \to \mathbb{R}\) is a function such that \(|f(x) -f(y)| \leq \Lambda (|x -y|)\) and \(|f(z)| \leq M(z) + N(z)\) for all \(x,y,z \in \mathbb{R}\), where \(\Lambda , M, N : \mathbb{R^{+}} \to \mathbb{R^{+}}\) are increasing functions with \(\lim_{\omega \to 0^{+}} \frac{\Lambda (\omega )}{\omega } =Q \in [0, \infty )\), \(\lim_{\omega \to \infty } \frac{M(\omega )}{\omega } = m \in [0, \infty )\), and \(\lim_{\omega \to \infty } N(\omega ) < \infty \). Suppose that \(\tilde{h_{p}}[0,1] = \int _{0}^{1} (1-\xi )^{\alpha +\beta -2} |h( \xi )| \hat{p}(1,\xi ) \,d\xi < \infty \) and \(\tilde{h_{q}}[0,1] = \int _{0}^{1} (1-\xi )^{\alpha +\beta -2} |h( \xi )| \hat{p}(1,\xi ) \,d\xi < \infty \), where \(\hat{p}(t,\xi ) = \int _{\xi }^{t} \frac{ds}{p(s)}\). If

$$\begin{aligned} & \Biggl( \frac{m }{\Gamma (\alpha ) \Gamma (\beta )} + \frac{m }{\Gamma (\alpha ) } \sum _{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \Biggr) \tilde{h_{p}}[0,1] \\ &\quad {}+ \Biggl( \frac{1}{\Gamma (\alpha ) \Gamma (\beta )} + \frac{1}{\Gamma (\alpha ) } \sum _{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \Biggr) \tilde{q_{p}}[0,1] \\ &\quad {}+ \frac{ \vert a \vert m \tilde{h_{p}}[0,\mu ] + \vert a \vert \tilde{h_{q}}[0, \mu ] }{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} < 1, \end{aligned}$$

then the singular boundary value problem (SBVP) \(\mathcal{D}^{\alpha }(p(t) \mathcal{D}^{\beta } \nu (t) ) + q(t) \nu (t)= h(t) f(\nu (t))\) with \(\nu ^{(i)} (0)=\mathcal{D}^{(\beta +j)} \nu (0)=0\) for \(0 \leq j \leq n-1\) and \(0 \leq i \leq k-1\) and \(a\nu (\mu )= \sum_{i=1}^{n_{0}} \lambda _{i} \mathcal{I}^{p_{i}} \nu (a_{i})\) has a solution, in which \(\Delta = a - \sum_{i=1}^{n_{0}} \frac{\lambda _{i} a_{i}^{p_{i}}}{ \Gamma (\beta +p_{i})}\).

Proof

First, we show that H is continuous. Let \(\nu , \nu ^{*} \in X\) and \(t \in [0,1]\). Then we have

$$\begin{aligned}& \bigl\vert H_{\nu }(t) - H_{\nu ^{*}}(t) \bigr\vert \\& \quad \leq \frac{1}{\Gamma (\beta )} \int _{0}^{t} (t-\zeta )^{\beta -1} \frac{ \vert B_{\alpha }(\zeta ,\nu (\zeta )) -B_{\alpha }(\zeta ,\nu ^{*}(\zeta )) + A_{\alpha }(\zeta ,\nu ^{*}(\zeta ))- A_{\alpha }(\zeta ,\nu (\zeta )) \vert }{p(\zeta )} \,d\zeta \\& \qquad {} + \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \\ & \qquad {}\times\int _{0}^{a_{i}} (a_{i} - \zeta )^{\beta +p_{i}-1} \frac{ \vert B_{\alpha }(\zeta ,\nu (\zeta )) -B_{\alpha }(\zeta ,\nu ^{*}(\zeta )) + A_{\alpha }(\zeta ,\nu ^{*}(\zeta ))- A_{\alpha }(\zeta ,\nu (\zeta )) \vert }{p(\zeta )} \,d\zeta \\ & \qquad {} + \frac{ \vert a \vert }{ \vert \Delta \vert \Gamma (\beta )} \\ & \qquad {}\times\int _{0}^{\mu } (\mu -\zeta )^{ \beta -1} \frac{ \vert B_{\alpha }(\zeta ,\nu (\zeta )) -B_{\alpha }(\zeta ,\nu ^{*}(\zeta )) + A_{\alpha }(\zeta ,\nu ^{*}(\zeta ))- A_{\alpha }(\zeta ,\nu (\zeta )) \vert }{p(\zeta )} \,d\zeta \\ & \quad \leq \frac{1}{\Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{t} \frac{ (t-\zeta )^{\beta -1}}{p(\zeta )} \biggl[ \int _{0}^{\zeta } ( \zeta -\xi )^{\alpha -1} \bigl\vert h(\xi ) \bigr\vert \bigl\vert f\bigl(\nu (\xi )\bigr) -f\bigl(\nu ^{*}(\xi )\bigr) \bigr\vert \,d\xi \\ & \qquad {} + \int _{0}^{\zeta } (\zeta -\xi )^{\alpha -1} \bigl\vert q(\xi ) \bigr\vert \bigl\vert \nu (\xi ) - \nu ^{*}( \xi ) \bigr\vert \,d\xi \biggr] \,d\zeta \\ & \qquad {} + \frac{1}{\Gamma (\alpha ) } \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \\ & \qquad {}\times \int _{0}^{a_{i}} \frac{ (a_{i} - \zeta )^{\beta +p_{i}-1} }{p(\zeta )} \biggl[ \int _{0}^{ \zeta } (\zeta -\xi )^{\alpha -1} \bigl\vert h(\xi ) \bigr\vert \bigl\vert f\bigl(\nu (\xi )\bigr) -f\bigl(\nu ^{*}( \xi )\bigr) \bigr\vert \,d\xi \\ & \qquad {} + \int _{0}^{\zeta } (\zeta -\xi )^{\alpha -1} \bigl\vert q(\xi ) \bigr\vert \bigl\vert \nu (\xi ) - \nu ^{*}( \xi ) \bigr\vert \,d\xi \biggr] \,d\zeta \\ & \qquad {} + \frac{ \vert a \vert }{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{ \mu } \frac{ (\mu -\zeta )^{\beta -1}}{p(\zeta )} \biggl[ \int _{0}^{ \zeta } (\zeta -\xi )^{\alpha -1} \bigl\vert h(\xi ) \bigr\vert \bigl\vert f\bigl(\nu (\xi )\bigr) -f\bigl(\nu ^{*}( \xi )\bigr) \bigr\vert \,d\xi \\ & \qquad {} + \int _{0}^{\zeta } (\zeta -\xi )^{\alpha -1} \bigl\vert q(\xi ) \bigr\vert \bigl\vert \nu (\xi ) - \nu ^{*}( \xi ) \bigr\vert \,d\xi \biggr] \,ds \\ & \quad = \frac{1}{\Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{t} \int _{0}^{ \zeta } \frac{ (t-\zeta )^{\beta -1} (\zeta -\xi )^{\alpha -1}}{p(\zeta )} \bigl\vert h( \xi ) \bigr\vert \bigl\vert f\bigl(\nu (\xi )\bigr) -f\bigl(\nu ^{*}(\xi )\bigr) \bigr\vert \,d\xi \\ & \qquad {} + \frac{1}{\Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{t} \int _{0}^{ \zeta } \frac{ (t-\zeta )^{\beta -1} (\zeta -\xi )^{\alpha -1}}{p(\zeta )} \bigl\vert q( \xi ) \bigr\vert \bigl\vert \nu (\xi ) -\nu ^{*}(\xi ) \bigr\vert \,d\xi \,d\zeta \\ & \qquad {} + \frac{1}{\Gamma (\alpha ) } \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \\ & \qquad {}\times\int _{0}^{a_{i}} \int _{0}^{s} \frac{ (a_{i} - \zeta )^{\beta +p_{i}-1} (\zeta -\xi )^{\alpha -1} }{p(\zeta )} \bigl\vert h(\xi ) \bigr\vert \bigl\vert f\bigl(\nu (\xi )\bigr) -f\bigl(\nu ^{*}(\xi )\bigr) \bigr\vert \,d\xi \\ & \qquad {} +\frac{1}{\Gamma (\alpha ) } \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \\ & \qquad {}\times\int _{0}^{a_{i}} \int _{0}^{\zeta } \frac{ (a_{i} - \zeta )^{\beta +p_{i}-1} (\zeta -\xi )^{\alpha -1} }{p(\zeta )} \bigl\vert q(\xi ) \bigr\vert \bigl\vert \nu (\xi ) -\nu ^{*}(\xi ) \bigr\vert \,d\xi \,d\zeta \\ & \qquad {} + \frac{ \vert a \vert }{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{ \mu } \int _{0}^{\zeta } \frac{ (\mu -\zeta )^{\beta -1} (\zeta -\xi )^{\alpha -1}}{p(\zeta )} \bigl\vert h( \xi ) \bigr\vert \bigl\vert f\bigl(\nu (\xi )\bigr) -f\bigl(\nu ^{*}(\xi )\bigr) \bigr\vert \,d\xi \\ & \qquad {} + \frac{ \vert a \vert }{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{ \mu } \int _{0}^{\zeta } \frac{ (\mu -\zeta )^{\beta -1} (\zeta -\xi )^{\alpha -1}}{p(\zeta )} \bigl\vert q( \xi ) \bigr\vert \bigl\vert \nu (\xi ) -\nu ^{*}(\xi ) \bigr\vert \,d\xi \,d\zeta \\ & \quad \leq \frac{1}{\Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{t} \int _{0}^{\zeta }\frac{ (t-\zeta )^{\beta -1} (\zeta -\xi )^{\alpha -1}}{p(\zeta )} \bigl\vert h( \xi ) \bigr\vert \Lambda \bigl( \bigl\vert \nu (\xi ) - \nu ^{*}(\xi ) \bigr\vert \bigr) \,d\xi \\& \qquad {} + \frac{1}{\Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{t} \int _{0}^{ \zeta } \frac{ (t-\zeta )^{\beta -1} (\zeta -\xi )^{\alpha -1}}{p(\zeta )} \bigl\vert q( \xi ) \bigr\vert \bigl\Vert \nu -\nu ^{*} \bigr\Vert \,d\xi \,d\zeta \\& \qquad {} + \frac{1}{\Gamma (\alpha ) } \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \\& \qquad {}\times\int _{0}^{a_{i}} \int _{0}^{\zeta }\frac{ (a_{i} - \zeta )^{\beta +p_{i}-1} (\zeta -\xi )^{\alpha -1} }{p(\zeta )} \bigl\vert h(\xi ) \bigr\vert \Lambda \bigl( \bigl\vert \nu (\xi ) - \nu ^{*}(\xi ) \bigr\vert \bigr)\,d\xi \\& \qquad {} +\frac{1}{\Gamma (\alpha ) } \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} \int _{0}^{\zeta }\frac{ (a_{i} - \zeta )^{\beta +p_{i}-1} (\zeta -\xi )^{\alpha -1} }{p(\zeta )} \bigl\vert q(\xi ) \bigr\vert \bigl\Vert \nu -\nu ^{*} \bigr\Vert \,d\xi \,d\zeta \\& \qquad {} + \frac{ \vert a \vert }{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{ \mu } \int _{0}^{\zeta }\frac{ (\mu -\zeta )^{\beta -1} (\zeta -\xi )^{\alpha -1}}{p(\zeta )} \bigl\vert h( \xi ) \bigr\vert \Lambda \bigl( \bigl\vert \nu (\xi ) - \nu ^{*}(\xi ) \bigr\vert \bigr) \,d\xi \\& \qquad {} + \frac{ \vert a \vert }{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{ \mu } \int _{0}^{\zeta }\frac{ (\mu -s)^{\beta -1} (\zeta -\xi )^{\alpha -1}}{p(\zeta )} \bigl\vert q( \xi ) \bigr\vert \bigl\Vert \nu -\nu ^{*} \bigr\Vert \,d\xi \,d\zeta \\& \quad \leq \frac{\Lambda ( \Vert \nu - \nu ^{*} \Vert )}{\Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{t} \int _{0}^{\zeta }\frac{ (t-\zeta )^{\beta -1} (\zeta -\xi )^{\alpha -1}}{p(\zeta )} \bigl\vert h( \xi ) \bigr\vert \,d\xi \\& \qquad {} + \frac{ \Vert \nu -\nu ^{*} \Vert }{\Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{t} \int _{0}^{\zeta }\frac{ (t-\zeta )^{\beta -1} (\zeta -\xi )^{\alpha -1}}{p(\zeta )} \bigl\vert q( \xi ) \bigr\vert \,d\xi \,d\zeta \\& \qquad {} + \frac{\Lambda ( \Vert \nu - \nu ^{*} \Vert )}{\Gamma (\alpha ) } \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} \int _{0}^{\zeta }\frac{ (a_{i} - \zeta )^{\beta +p_{i}-1} (\zeta -\xi )^{\alpha -1} }{p(\zeta )} \bigl\vert h(\xi ) \bigr\vert \,d\xi \\& \qquad {} +\frac{ \Vert \nu -\nu ^{*} \Vert }{\Gamma (\alpha ) } \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} \int _{0}^{\zeta }\frac{ (a_{i} - \zeta )^{\beta +p_{i}-1} (\zeta -\xi )^{\alpha -1} }{p(\zeta )} \bigl\vert q(\xi ) \bigr\vert \,d\xi \,d\zeta \\& \qquad {} + \frac{ \vert a \vert \Lambda ( \Vert \nu - \nu ^{*} \Vert )}{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{\mu } \int _{0}^{\zeta }\frac{ (\mu -\zeta )^{\beta -1} (\zeta -\xi )^{\alpha -1}}{p(\zeta )} \bigl\vert h( \xi ) \bigr\vert \,d\xi \\& \qquad {} + \frac{ \vert a \vert \Vert \nu -\nu ^{*} \Vert }{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{\mu } \int _{0}^{\zeta }\frac{ (\mu -\zeta )^{\beta -1} (\zeta -\xi )^{\alpha -1}}{p(\zeta )} \bigl\vert q( \xi ) \bigr\vert \,d\xi \,d\zeta . \end{aligned}$$

Let \(\epsilon >0\) be given. Since \(\lim_{z \to 0^{+}} \frac{\Lambda (z)}{z} =Q \in [0, \infty )\), there exists \(\delta (\epsilon ) >0\) such that \(z \in (0, \delta (\epsilon )]\) implies \(| \frac{\Lambda (z)}{z}| \leq Q + \epsilon \). Hence, \(z \in (0, \delta (\epsilon )]\) implies \(\Lambda (z) \leq (Q + \epsilon ) z\). Put \(\delta _{m}(\epsilon ) = \min \{ \epsilon , \delta (\epsilon ) \}\). Then \(\|\nu -\nu ^{*}\| \leq \delta _{m}(\epsilon ) \) implies \(\Lambda (\|\nu -\nu ^{*}\|) \leq (Q + \epsilon ) \|\nu -\nu ^{*}\|\). Also,

$$\begin{aligned} & \int _{0}^{t} \int _{0}^{\zeta }\frac{ (t-\zeta )^{\beta -1} (\zeta -\xi )^{\alpha -1}}{p(\zeta )} \bigl\vert q( \xi ) \bigr\vert \,d\xi \,d\zeta \\ &\quad = \int _{0}^{t} \int _{\xi }^{t} \frac{ (t-\zeta )^{\beta -1} (\zeta -\xi )^{\alpha -1}}{p(\zeta )} \bigl\vert q( \xi ) \bigr\vert \,d\zeta \,d\xi \\ &\quad = \int _{0}^{t} \bigl\vert q(\xi ) \bigr\vert \biggl( \int _{\xi }^{t} \frac{ (t-\zeta )^{\beta -1} (\zeta -\xi )^{\alpha -1}}{p(\zeta )} \,d\zeta \biggr) \,d\xi \\ &\quad \leq \int _{0}^{t} \bigl\vert q(\xi ) \bigr\vert \biggl( \int _{\xi }^{t} \frac{ (t- \xi )^{\beta -1} (t-\xi )^{\alpha -1}}{p(\zeta )} \,d\zeta \biggr) \,d\xi . \end{aligned}$$

Since \(\alpha , \beta \geq 1\) and \(\zeta \in [\xi , t]\), we get \((t- \zeta )^{\beta -1} \leq (t-\xi )^{\beta -1}\) and \((\zeta -\xi )^{\alpha -1} \leq (t-\xi )^{\alpha -1}\), so

$$\begin{aligned} &\int _{0}^{t} \int _{0}^{\zeta }\frac{ (t-\zeta )^{\beta -1} (\zeta -\xi )^{\alpha -1}}{p(\zeta )} \bigl\vert q( \xi ) \bigr\vert \,d\xi \,d\zeta \\ &\quad \leq \int _{0}^{t} (t- \xi )^{\alpha + \beta -2} \bigl\vert q(\xi ) \bigr\vert \biggl( \int _{\xi }^{t} \frac{d\zeta }{p(\zeta )} \biggr) \,d\xi \\ &\quad \leq \int _{0}^{t} (t- \xi )^{\alpha + \beta -2} \bigl\vert q(\xi ) \bigr\vert \hat{p}(t, \xi ) \,d\xi , \end{aligned}$$

where \(\hat{p}(t,\xi ) = \int _{\xi }^{t} \frac{d\zeta }{p(\zeta )}\). Obviously, \(\hat{p}(t,\xi )\) is increasing with respect to t and is decreasing with respect to ξ. Therefore, we get

$$\begin{aligned}& \int _{0}^{t} \int _{0}^{\zeta }\frac{ (t-\zeta )^{\beta -1} (\zeta -\xi )^{\alpha -1}}{p(\zeta )} \bigl\vert h( \xi ) \bigr\vert \,d\xi \,d\zeta \\& \quad \leq \int _{0}^{t} (t- \xi )^{\alpha + \beta -2} \bigl\vert h(\xi ) \bigr\vert \hat{p}(t, \xi ) \,d\xi , \\& \int _{0}^{a_{i}} \int _{0}^{\zeta }\frac{ (a_{i} -\zeta )^{\beta +p_{i} -1} (\zeta -\xi )^{\alpha -1}}{p(\zeta )} \bigl\vert h(\xi ) \bigr\vert \,d\xi \,d\zeta \\& \quad \leq \int _{0}^{a_{i}} (a_{i}- \xi )^{\alpha + \beta +p_{i} -2} \bigl\vert h( \xi ) \bigr\vert \hat{p}(t,\xi ) \,d\xi , \end{aligned}$$

and

$$ \int _{0}^{\mu } \int _{0}^{\zeta }\frac{ (\mu -\zeta )^{\beta -1} (\zeta -\xi )^{\alpha -1}}{p(\zeta )} \bigl\vert h( \xi ) \bigr\vert \,d\xi \,d\zeta \leq \int _{0}^{\mu } (\mu - \xi )^{\alpha + \beta -2} \bigl\vert h(\xi ) \bigr\vert \hat{p}(t,\xi ) \,d\xi . $$

Thus it evolved that

$$\begin{aligned} \bigl\vert H_{\nu }(t) - H_{\nu ^{*}}(t) \bigr\vert &\leq \frac{\Lambda ( \Vert \nu - \nu ^{*} \Vert )}{\Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{t} (t-\xi )^{\alpha +\beta -2} \bigl\vert h(\xi ) \bigr\vert \hat{p}(t,\xi ) \,d\xi \\ &\quad {}+ \frac{ \Vert \nu -\nu ^{*} \Vert }{\Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{t} (t-\xi )^{\alpha +\beta -2} \bigl\vert q(\xi ) \bigr\vert \hat{p}(t,\xi ) \,d\xi \\ &\quad {}+ \frac{\Lambda ( \Vert \nu - \nu ^{*} \Vert )}{\Gamma (\alpha ) } \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} ( a_{i} -\xi )^{\alpha +p_{i}+\beta -2} \bigl\vert h(\xi ) \bigr\vert \hat{p}(t,\xi ) \,d\xi \\ &\quad {}+\frac{ \Vert \nu -\nu ^{*} \Vert }{\Gamma (\alpha ) } \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} ( a_{i} -\xi )^{\alpha +p_{i}+\beta -2} \bigl\vert h(\xi ) \bigr\vert \hat{p}(t,\xi ) \,d\xi \\ &\quad {}+ \frac{ \vert a \vert \Lambda ( \Vert \nu - \nu ^{*} \Vert )}{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{\mu } (\mu - \xi )^{\alpha + \beta -2} \bigl\vert h(\xi ) \bigr\vert \hat{p}(t, \xi ) \,d\xi \\ &\quad {}+ \frac{ \vert a \vert \Vert \nu -\nu ^{*} \Vert }{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{\mu } (\mu - \xi )^{\alpha + \beta -2} \bigl\vert h(\xi ) \bigr\vert \hat{p}(t, \xi ) \,d\xi . \end{aligned}$$

Let \(\epsilon >0\) be given and \(\|\nu -\nu ^{*}\| \leq \delta _{m}(\epsilon )\). Then we have

$$\begin{aligned} \bigl\vert H_{\nu }(t) - H_{\nu ^{*}}(t) \bigr\vert &\leq \frac{(Q+\epsilon ) \Vert \nu -\nu ^{*} \Vert }{\Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{t} (t-\xi )^{\alpha +\beta -2} \bigl\vert h(\xi ) \bigr\vert \hat{p}(t,\xi ) \,d\xi \\ &\quad {}+ \frac{ \Vert \nu -\nu ^{*} \Vert }{\Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{t} (t-\xi )^{\alpha +\beta -2} \bigl\vert q(\xi ) \bigr\vert \hat{p}(t,\xi ) \,d\xi \\ &\quad {}+ \frac{(Q+\epsilon ) \Vert \nu -\nu ^{*} \Vert }{\Gamma (\alpha ) } \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \\ &\quad {}\times\int _{0}^{a_{i}} ( a_{i} -\xi )^{\alpha +p_{i}+\beta -2} \bigl\vert h(\xi ) \bigr\vert \hat{p}(t,\xi ) \,d\xi \\ &\quad {}+\frac{ \Vert \nu -\nu ^{*} \Vert }{\Gamma (\alpha ) } \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} ( a_{i} -\xi )^{\alpha +p_{i}+\beta -2} \bigl\vert h(\xi ) \bigr\vert \hat{p}(t,\xi ) \,d\xi \\ &\quad {}+ \frac{ \vert a \vert (Q+\epsilon ) \Vert \nu -\nu ^{*} \Vert }{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{\mu } (\mu - \xi )^{\alpha + \beta -2} \bigl\vert h(\xi ) \bigr\vert \hat{p}(t, \xi ) \,d\xi \\ &\quad {}+ \frac{ \vert a \vert \Vert \nu -\nu ^{*} \Vert }{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{\mu } (\mu - \xi )^{\alpha + \beta -2} \bigl\vert h(\xi ) \bigr\vert \hat{p}(t, \xi ) \,d\xi \\ &\leq \frac{(Q+\epsilon ) \epsilon }{\Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{1} (1 -\xi )^{\alpha +\beta -2} \bigl\vert h(\xi ) \bigr\vert \hat{p}(1,\xi ) \,d\xi \\ &\quad {}+ \frac{ \epsilon }{\Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{1} (1- \xi )^{\alpha +\beta -2} \bigl\vert q(\xi ) \bigr\vert \hat{p}(1,\xi ) \,d\xi \\ &\quad {}+ \frac{(Q+\epsilon ) \epsilon }{\Gamma (\alpha ) } \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \int _{0}^{1} (1 -\xi )^{\alpha +\beta -2} \bigl\vert h(\xi ) \bigr\vert \hat{p}(1,\xi ) \,d\xi \\ &\quad {}+\frac{\epsilon }{\Gamma (\alpha ) } \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \int _{0}^{1} ( 1 -\xi )^{\alpha + \beta -2} \bigl\vert h(\xi ) \bigr\vert \hat{p}(1,\xi ) \,d\xi \\ &\quad {}+ \frac{ \vert a \vert (Q+\epsilon ) \epsilon }{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{1} (1 - \xi )^{\alpha + \beta -2} \bigl\vert h(\xi ) \bigr\vert \hat{p}(1,\xi ) \,d\xi \\ &\quad {}+ \frac{ \vert a \vert \epsilon }{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{1} (1 - \xi )^{\alpha + \beta -2} \bigl\vert h(\xi ) \bigr\vert \hat{p}(1,\xi ) \,d\xi . \end{aligned}$$

Hence, we conclude that

$$\begin{aligned} \bigl\vert H_{\nu }(t) - H_{\nu ^{*}}(t) \bigr\vert &\leq \frac{(Q+\epsilon ) \epsilon }{\Gamma (\alpha ) \Gamma (\beta )} \tilde{h_{p}}[0,1] + \frac{ \epsilon }{\Gamma (\alpha ) \Gamma (\beta )} \tilde{q_{p}}[0,1] \\ &\quad {}+ \frac{\tilde{h_{p}}[0,1](Q+\epsilon ) \epsilon }{\Gamma (\alpha ) } \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} + \frac{\tilde{q_{p}}[0,1] \epsilon }{\Gamma (\alpha ) } \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \\ &\quad {}+ \frac{ \vert a \vert \tilde{h_{p}}[0, 1](Q+\epsilon ) \epsilon }{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} + \frac{ \vert a \vert \tilde{q_{p}}[0, 1] \epsilon }{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \end{aligned}$$

for all \(t \in [0,1]\), where

$$ \tilde{h_{p}}[0,t] = \int _{0}^{t} (1-\xi )^{\alpha +\beta -2} \bigl\vert h( \xi ) \bigr\vert \hat{p}(1,\xi ) \,d\xi $$

and

$$ \tilde{q_{p}}[0,t] = \int _{0}^{t} (1-\xi )^{\alpha +\beta -2} \bigl\vert q( \xi ) \bigr\vert \hat{p}(1,\xi ) \,d\xi . $$

By using the supremum norm on \([0,1]\), it is deduced that

$$\begin{aligned} \Vert H_{\nu }- H_{\nu ^{*}} \Vert &\leq \Biggl( \frac{(Q+\epsilon )\tilde{h_{p}}[0,1]+\tilde{q_{p}}[0,1]}{\Gamma (\alpha ) \Gamma (\beta )} \\ &\quad {}+ \frac{\tilde{h_{p}}[0,1](Q+\epsilon ) +\tilde{q_{p}}[0,1] }{\Gamma (\alpha ) } \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \\ &\quad {}+ \frac{ \vert a \vert \tilde{h_{p}}[0, 1](Q+\epsilon ) + \vert a \vert \tilde{q_{p}}[0, 1]}{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \Biggr) \epsilon . \end{aligned}$$

This implies that \(\|H_{\nu }- H_{\nu ^{*}} \|\) tends to zero as \(\|\nu - \nu ^{*} \|\to 0\). Thus, H is continuous. Since \(|f(\omega )| \leq M(\omega ) + N(\omega )\) for all \(\omega \in [0, \infty )\) and \(\lim_{\omega \to \infty } \frac{M(\omega )}{\omega } = m \in [0, \infty )\) for each \(\epsilon > 0\), there exists \(R(\epsilon ) >0\) such that \(\omega \in [R(\epsilon ), \infty )\) implies

$$ M(\omega ) \leq (m+ \epsilon ) \omega . $$
(3)

Likewise, by the assumptions \(\lim_{\omega \to \infty } N(\omega ) < \infty \), it results that \(\lim_{\omega \to \infty } \frac{N(\omega )}{\omega } =0\), so there exists \(R'(\epsilon ) > 0\) such that \(\frac{N(\omega )}{\omega } < \epsilon \) for all \(\omega \in [R'(\epsilon ), \infty )\). Therefore, \(\omega \in [R'(\epsilon ), \infty )\) implies

$$ N(\omega ) \leq \epsilon \omega . $$
(4)

On the other side, we have

$$\begin{aligned} & \Biggl( \frac{m }{\Gamma (\alpha ) \Gamma (\beta )} + \frac{m }{\Gamma (\alpha ) } \sum _{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \Biggr) \tilde{h_{p}}[0,1] \\ &\quad {}+ \Biggl( \frac{1}{\Gamma (\alpha ) \Gamma (\beta )} + \frac{1}{\Gamma (\alpha ) } \sum _{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \Biggr) \tilde{q_{p}}[0,1] \\ &\quad {}+ \frac{ \vert a \vert m \tilde{h_{p}}[0,\mu ] + \vert a \vert \tilde{h_{q}}[0, \mu ] }{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} < 1. \end{aligned}$$

Choose \(\epsilon _{0} >0\) such that

$$\begin{aligned} & \Biggl( \frac{m + 2 \epsilon _{0} }{\Gamma (\alpha ) \Gamma (\beta )} + \frac{m + 2 \epsilon _{0} }{\Gamma (\alpha ) } \sum _{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \Biggr) \tilde{h_{p}}[0,1] \\ &\quad {}+ \Biggl( \frac{1}{\Gamma (\alpha ) \Gamma (\beta )} + \frac{1}{\Gamma (\alpha ) } \sum _{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \Biggr) \tilde{q_{p}}[0,1] \\ &\quad {}+ \frac{ \vert a \vert (m+2 \epsilon _{0} ) \tilde{h_{p}}[0,\mu ] + \vert a \vert \tilde{h_{q}}[0, \mu ] }{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} < 1. \end{aligned}$$

Put \(R_{0} := \max \{ R(\epsilon _{0}), R'(\epsilon _{0})\}\). By using (3) and (4), for \(\omega = R_{0}\), we get \(M(R_{0}) \leq (m+ \epsilon _{0}) R_{0}\) and \(N(R_{0}) \leq \epsilon _{0} R_{0}\). Define \(\Omega = \{ u \in X : \|u\| < R_{0} \}\). Let \(u_{0} \in \partial \Omega \) and \(\lambda \in (0,1)\) be such that \(u_{0} = \lambda H_{u_{0}}\). Then \(\|u_{0}\| = R_{0}\). Then we have

$$\begin{aligned} \bigl\vert u_{0}(t) \bigr\vert &= \bigl\vert \lambda H_{u_{0}}(t) \bigr\vert \\ &\leq \lambda \Biggl[ \frac{1}{\Gamma (\beta )} \int _{0}^{t} (t-\zeta )^{\beta -1} \frac{ \vert B_{\alpha }(\zeta ,u_{0}(\zeta )) - A_{\alpha }(\zeta ,u_{0}(\zeta )) \vert }{p(\zeta )} \,d\zeta \\ &\quad {}+ \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} (a_{i} - \zeta )^{\beta +p_{i}-1} \frac{ \vert B_{\alpha }(\zeta ,u_{0}(\zeta )) - A_{\alpha }(\zeta ,u_{0}(\zeta )) \vert }{p(\zeta )} \,d\zeta \\ &\quad {}+ \frac{ \vert a \vert }{ \vert \Delta \vert \Gamma (\beta )} \int _{0}^{\mu } (\mu -\zeta )^{ \beta -1} \frac{ \vert B_{\alpha }(\zeta ,u_{0}(\zeta )) - A_{\alpha }(\zeta ,u_{0}(\zeta )) \vert }{p(\zeta )} \,d\zeta \Biggr] \\ &\leq \lambda \Biggl[ \frac{1}{\Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{t} \frac{ (t-\zeta )^{\beta -1}}{p(\zeta )} \biggl( \int _{0}^{\zeta }( \zeta -\xi )^{\alpha -1} \bigl\vert h(\xi ) \bigr\vert \bigl\vert f\bigl(u_{0}(\xi ) \bigr) \bigr\vert \,d\xi \\ &\quad {}+ \int _{0}^{\zeta }(\zeta -\xi )^{\alpha -1} \bigl\vert q(\xi ) \bigr\vert \bigl\vert u_{0}(\xi ) \bigr\vert \,d\xi \biggr) \,d\zeta + \frac{1}{\Gamma (\alpha ) } \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \\ &\quad {}\times\int _{0}^{a_{i}} \frac{ (a_{i} - \zeta )^{\beta +p_{i}-1} }{p(\zeta )} \biggl( \int _{0}^{\zeta }(\zeta -\xi )^{\alpha -1} \bigl\vert h(\xi ) \bigr\vert \bigl\vert f\bigl(u_{0}(\xi ) \bigr) \bigr\vert \,d\xi \\ &\quad {}+ \int _{0}^{\zeta }(\zeta -\xi )^{\alpha -1} \bigl\vert q(\xi ) \bigr\vert \bigl\vert u_{0}(\xi ) \bigr\vert \,d\xi \biggr) \,d\zeta \\ &\quad {}+ \frac{ \vert a \vert }{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{ \mu } \frac{ (\mu -\zeta )^{\beta -1}}{p(\zeta )} \biggl( \int _{0}^{\zeta }(\zeta -\xi )^{\alpha -1} \bigl\vert h(\xi ) \bigr\vert \bigl\vert f\bigl(u_{0}(\xi ) \bigr) \bigr\vert \,d\xi \\ &\quad {}+ \int _{0}^{\zeta }(\zeta -\xi )^{\alpha -1} \bigl\vert q(\xi ) \bigr\vert \bigl\vert u_{0}(\xi ) \bigr\vert \,d\xi \biggr) \,d\zeta \Biggr] \\ &= \lambda \Biggl[ \frac{1}{\Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{t} \int _{0}^{\zeta }\frac{ (t-\zeta )^{\beta -1} (\zeta -\xi )^{\alpha -1}}{p(\zeta )} \bigl\vert h( \xi ) \bigr\vert \bigl\vert f\bigl(u_{0}(\xi )\bigr) \bigr\vert \,d\xi \,d\zeta \\ &\quad {}+ \frac{1}{\Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{t} \int _{0}^{\zeta }\frac{ (t-\zeta )^{\beta -1} (\zeta -\xi )^{\alpha -1}}{p(\zeta )} \bigl\vert q( \xi ) \bigr\vert \bigl\vert u_{0}(\xi ) \bigr\vert \,d\xi \,d\zeta \\ &\quad {}+ \frac{1}{\Gamma (\alpha ) } \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \\ &\quad {}\times\int _{0}^{a_{i}} \int _{0}^{\zeta }\frac{ (a_{i} - \zeta )^{\beta +p_{i}-1} (\zeta -\xi )^{\alpha -1} }{p(\zeta )} \bigl\vert h(\xi ) \bigr\vert \bigl\vert f\bigl(u_{0}(\xi )\bigr) \bigr\vert \,d\xi \,d\zeta \\ &\quad {}+\frac{1}{\Gamma (\alpha ) } \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} \int _{0}^{\zeta }\frac{ (a_{i} - \zeta )^{\beta +p_{i}-1} (\zeta -\xi )^{\alpha -1} }{p(\zeta )} \bigl\vert q(\xi ) \bigr\vert \bigl\vert u_{0}(\xi ) \bigr\vert \,d\xi \,d\zeta \\ &\quad {}+ \frac{ \vert a \vert }{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{ \mu } \int _{0}^{\zeta }\frac{ (\mu -\zeta )^{\beta -1} (\zeta -\xi )^{\alpha -1}}{p(\zeta )} \bigl\vert h( \xi ) \bigr\vert \bigl\vert f\bigl(u_{0}(\xi )\bigr) \bigr\vert \,d\xi \,d\zeta \\ &\quad {}+ \frac{ \vert a \vert }{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{ \mu } \int _{0}^{\zeta }\frac{ (\mu -\zeta )^{\beta -1} (\zeta -\xi )^{\alpha -1}}{p(\zeta )} \bigl\vert q( \xi ) \bigr\vert \bigl\vert u_{0}(\xi ) \bigr\vert \,d\xi \,d\zeta \Biggr] \\ &\leq \lambda \Biggl[ \frac{1}{\Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{t} \int _{0}^{\zeta }\frac{ (t-\zeta )^{\beta -1} (\zeta -\xi )^{\alpha -1}}{p(\zeta )} \bigl\vert h( \xi ) \bigr\vert \bigl(M\bigl(u_{0}(\xi ) \bigr)+ N \bigl(u_{0}(\xi )\bigr) \bigr) \,d\xi \,d\zeta \\ &\quad {}+ \frac{1}{\Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{t} \int _{0}^{\zeta }\frac{ (t-\zeta )^{\beta -1} (\zeta -\xi )^{\alpha -1}}{p(\zeta )} \bigl\vert q( \xi ) \bigr\vert \bigl\vert u_{0}(\xi ) \bigr\vert \,d\xi \,d\zeta \\ &\quad {}+ \frac{1}{\Gamma (\alpha ) } \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \\ &\quad {}\times\int _{0}^{a_{i}} \int _{0}^{\zeta }\frac{ (a_{i} - \zeta )^{\beta +p_{i}-1} (\zeta -\xi )^{\alpha -1} }{p(s)} \bigl\vert h(\xi ) \bigr\vert \bigl(M\bigl(u_{0}(\xi ) \bigr)+ N \bigl(u_{0}(\xi )\bigr) \bigr) \,d\xi \,d\zeta \\ &\quad {}+\frac{1}{\Gamma (\alpha ) } \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} \int _{0}^{\zeta }\frac{ (a_{i} - \zeta )^{\beta +p_{i}-1} (\zeta -\xi )^{\alpha -1} }{p(\zeta )} \bigl\vert q(\xi ) \bigr\vert \bigl\vert u_{0}(\xi ) \bigr\vert \,d\xi \,d\zeta \\ &\quad {}+ \frac{ \vert a \vert }{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \\ &\quad {}\times\int _{0}^{ \mu }\int _{0}^{\zeta }\frac{ (\mu -\zeta )^{\beta -1} (\zeta -\xi )^{\alpha -1}}{p(\zeta )} \bigl\vert h( \xi ) \bigr\vert \bigl(M\bigl(u_{0}(\xi ) \bigr)+ N \bigl(u_{0}(\xi )\bigr) \bigr) \,d\xi \,d\zeta \\ &\quad {}+ \frac{ \vert a \vert }{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{ \mu } \int _{0}^{\zeta }\frac{ (\mu -s)^{\beta -1} (\zeta -\xi )^{\alpha -1}}{p(\zeta )} \bigl\vert q( \xi ) \bigr\vert \bigl\vert u_{0}(\xi ) \bigr\vert \,d\xi \,d\zeta \Biggr] \\ &\leq \lambda \Biggl[ \frac{M( \Vert u_{0} \Vert )+ N( \Vert u_{0} \Vert ) }{\Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{t} \int _{0}^{\zeta }\frac{ (t-\zeta )^{\beta -1} (\zeta -\xi )^{\alpha -1}}{p(\zeta )} \bigl\vert h( \xi ) \bigr\vert \,d\xi \,d\zeta \\ &\quad {}+ \frac{ \Vert u_{0} \Vert }{\Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{t} \int _{0}^{\zeta }\frac{ (t-\zeta )^{\beta -1} (\zeta -\xi )^{\alpha -1}}{p(\zeta )} \bigl\vert q( \xi ) \bigr\vert \,d\xi \,d\zeta \\ &\quad {}+ \frac{M( \Vert u_{0} \Vert )+ N( \Vert u_{0} \Vert ) }{\Gamma (\alpha ) } \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \\ &\quad {}\times\int _{0}^{a_{i}} \int _{0}^{\zeta }\frac{ (a_{i} - \zeta )^{\beta +p_{i}-1} (\zeta -\xi )^{\alpha -1} }{p(\zeta )} \bigl\vert h(\xi ) \bigr\vert \,d\xi \,d\zeta \\ &\quad {}+\frac{ \Vert u_{0} \Vert }{\Gamma (\alpha ) } \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} \int _{0}^{\zeta }\frac{ (a_{i} - \zeta )^{\beta +p_{i}-1} (\zeta -\xi )^{\alpha -1} }{p(\zeta )} \bigl\vert q(\xi ) \bigr\vert \,d\xi \,d\zeta \\ &\quad {}+ \frac{ \vert a \vert (M( \Vert u_{0} \Vert )+ N( \Vert u_{0} \Vert ) )}{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{\mu } \int _{0}^{\zeta }\frac{ (\mu -\zeta )^{\beta -1} (\zeta -\xi )^{\alpha -1}}{p(\zeta )} \bigl\vert h( \xi ) \bigr\vert \,d\xi \,d\zeta \\ &\quad {}+ \frac{ \vert a \vert \Vert u_{0} \Vert }{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{\mu } \int _{0}^{\zeta }\frac{ (\mu -\zeta )^{\beta -1} (\zeta -\xi )^{\alpha -1}}{p(\zeta )} \bigl\vert q( \xi ) \bigr\vert \,d\xi \,d\zeta \Biggr] \\ &\leq \lambda \Biggl[ \frac{M(R_{0} )+ N(R_{0}) }{\Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{t} (t-\xi )^{\alpha + \beta -2} \bigl\vert h(\xi ) \bigr\vert \hat{p}(t, \xi ) \,d\xi \\ &\quad {}+ \frac{R_{0}}{\Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{t} (t- \xi )^{\alpha + \beta -2} \bigl\vert q(\xi ) \bigr\vert \hat{p}(t, \xi ) \,d\xi \\ &\quad {}+ \frac{M(R_{0} )+ N(R_{0}) }{\Gamma (\alpha ) } \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} (a_{i} - \xi )^{\alpha + \beta +p_{i}-2} \bigl\vert h(\xi ) \bigr\vert \hat{p}(a_{i}, \xi ) \,d\xi \\ &\quad {}+\frac{R_{0}}{\Gamma (\alpha ) } \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} (a_{i} - \xi )^{\alpha + \beta +p_{i}-2} \bigl\vert q(\xi ) \bigr\vert \hat{p}(a_{i}, \xi ) \,d\xi \\ &\quad {}+ \frac{ \vert a \vert (M(R_{0} )+ N(R_{0}) )}{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{\mu } (\mu -\xi )^{\alpha + \beta -2} \bigl\vert h(\xi ) \bigr\vert \hat{p}( \mu , \xi ) \,d\xi \\ &\quad {}+ \frac{ \vert a \vert R_{0}}{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{ \mu } (\mu -\xi )^{\alpha + \beta -2} \bigl\vert q(\xi ) \bigr\vert \hat{p}(\mu , \xi ) \,d\xi \Biggr] \end{aligned}$$

for all \(t \in [0, 1]\). Hence,

$$\begin{aligned} \bigl\vert u_{0}(t) \bigr\vert &\leq \lambda \Biggl[ \frac{(m+\epsilon _{0})R_{0} + \epsilon _{0} R_{0}}{\Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{t} (1-\xi )^{\alpha + \beta -2} \bigl\vert h(\xi ) \bigr\vert \hat{p}(1, \xi ) \,d\xi \\ &\quad {}+ \frac{R_{0}}{\Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{1} (1- \xi )^{\alpha + \beta -2} \bigl\vert q(\xi ) \bigr\vert \hat{p}(1, \xi ) \,d\xi \\ &\quad {}+ \frac{(m+\epsilon _{0})R_{0} + \epsilon _{0} R_{0} }{\Gamma (\alpha ) } \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \int _{0}^{1} (1 - \xi )^{\alpha + \beta +p_{i}-2} \bigl\vert h(\xi ) \bigr\vert \hat{p}(1, \xi ) \,d\xi \\ &\quad {}+\frac{R_{0}}{\Gamma (\alpha ) } \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \int _{0}^{1} (1 - \xi )^{\alpha + \beta +p_{i}-2} \bigl\vert q(\xi ) \bigr\vert \hat{p}(1, \xi ) \,d\xi \\ &\quad {}+ \frac{ \vert a \vert ((m+\epsilon _{0})R_{0} + \epsilon _{0} R_{0} )}{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{\mu } (\mu -\xi )^{\alpha + \beta -2} \bigl\vert h(\xi ) \bigr\vert \hat{p}(1, \xi ) \,d\xi \\ &\quad {}+ \frac{ \vert a \vert R_{0}}{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \int _{0}^{ \mu } (\mu -\xi )^{\alpha + \beta -2} \bigl\vert q(\xi ) \bigr\vert \hat{p}(1, \xi ) \,d\xi \Biggr] \end{aligned}$$

for all \(t \in [0,1]\). Thus we infer that

$$\begin{aligned} \bigl\vert u_{0}(t) \bigr\vert \leq& \lambda \Biggl[ \frac{(m+\epsilon _{0})R_{0} + \epsilon _{0} R_{0}}{\Gamma (\alpha ) \Gamma (\beta )} \tilde{h_{p}}[0,1] + \frac{R_{0}}{\Gamma (\alpha ) \Gamma (\beta )} \tilde{q_{p}}[0,1] \\ & {}+ \frac{(m+\epsilon _{0})R_{0} + \epsilon _{0} R_{0} }{\Gamma (\alpha ) } \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \tilde{h_{p}}[0,1] \\ &{}+\frac{R_{0}}{\Gamma (\alpha ) } \sum _{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \tilde{h_{q}}[0,1] \\ & {}+ \frac{ \vert a \vert ((m+\epsilon _{0})R_{0} + \epsilon _{0} R_{0} )}{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \tilde{h_{p}}[0,\mu ] + \frac{ \vert a \vert R_{0}}{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \tilde{h_{q}}[0, \mu ] \Biggr], \end{aligned}$$

and so by using the supremum on \([0,1]\), we have

$$\begin{aligned} \Vert u_{0} \Vert &\leq \lambda \Biggl[ \Biggl( \frac{m + 2 \epsilon _{0} }{\Gamma (\alpha ) \Gamma (\beta )} + \frac{m + 2 \epsilon _{0} }{\Gamma (\alpha ) } \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \Biggr) \tilde{h_{p}}[0,1] \\ &\quad {}+ \Biggl( \frac{1}{\Gamma (\alpha ) \Gamma (\beta )} + \frac{1}{\Gamma (\alpha ) } \sum _{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \Biggr) \tilde{q_{p}}[0,1] \\ &\quad {}+ \frac{ \vert a \vert (m+2 \epsilon _{0} ) \tilde{h_{p}}[0,\mu ] + \vert a \vert \tilde{h_{q}}[0, \mu ] }{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \Biggr] R_{0} < R_{0}. \end{aligned}$$

This implies that \(u_{0} \notin \partial \Omega \). By the same way, via Lemma 1.2, H has a fixed point in Ω̄ which is a solution for FBVP (1). □

Example 2.3

Consider the strong singular Sturm–Liouville equation

$$ \bigl( t^{2} u'(t) \bigr)' + \frac{\sqrt{t} u(t)}{5 c(t)}= \frac{\sqrt{t}}{10}\bigl(u(t) + 1\bigr) $$
(5)

with boundary conditions \(u'(0)=0\) and \(u(\frac{1}{2})=u(1) = 0\). Put \(\alpha = \beta = 1\), \(n_{0} = 2\), \(p_{1}= p_{2} = 0\), \(a=0\), \(\mu \in [0,1]\), \(a_{1} = \frac{1}{2}\), \(a_{2} =1\), \(\lambda _{1} = \lambda _{2} = 1\), \(p(t) = t^{2}\), \(h(t) = \frac{\sqrt{t}}{10}\), \(q(t)= \frac{\sqrt{t}}{5 c(t)}\), where \(c(t)=0\) when \(t \in Q \cap [0,1]\), and \(c(t)= 1\) for \(t \in Q^{c} \cap [0,1]\). If \(f(u) = u+1\), then we have

$$ \hat{p}(1, \xi ) = \int _{\xi }^{1} \frac{d\zeta }{\zeta ^{2}} = \frac{1}{\xi } -1, \qquad \tilde{q_{p}}[0,1] = \frac{1}{5} \int _{0}^{1} \frac{\sqrt{\xi }}{ c(\xi )} \biggl( \frac{1}{\xi } - 1\biggr) \,d\xi = \frac{4}{15} $$

and \(\tilde{h_{p}}[0,1] = \frac{1}{10} \int _{0}^{1} \sqrt{\xi } ( \frac{1}{\xi } - 1) \,d\xi = \frac{4}{30}\). Note that \(\Delta = a - \sum_{i=1}^{n_{0}} \frac{\lambda _{i} a_{i}^{p_{i}}}{ \Gamma (\beta +p_{i})} = -( \frac{1}{2} + 1) = - \frac{3}{2}\),

$$\begin{aligned}& \bigl\vert f(u) - f(v) \bigr\vert = \vert u - v \vert := \Lambda \bigl( \vert u -v \vert \bigr), \\& \lim_{\omega \to 0^{+}} \frac{\Lambda (\omega )}{\omega } = \lim_{ \omega \to 0^{+}} \frac{\omega }{\omega } = 1 \in [0, \infty )\quad \text{and} \quad \bigl\vert f(u) \bigr\vert \leq \vert u \vert + 1 := M(u) + N(u), \end{aligned}$$

where \(M(u) = |u|\), \(N(u) =1\), \(m= \lim_{\omega \to \infty } \frac{M (\omega )}{\omega } =1\), and \(\lim_{\omega \to \infty } N(\omega ) <\infty \). Note that

$$\begin{aligned} & \Biggl( \frac{m }{\Gamma (\alpha ) \Gamma (\beta )} + \frac{m }{\Gamma (\alpha ) } \sum _{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \Biggr) \tilde{h_{p}}[0,1] \\ &\quad {}+ \Biggl( \frac{1}{\Gamma (\alpha ) \Gamma (\beta )} + \frac{1}{\Gamma (\alpha ) } \sum _{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \Biggr) \tilde{q_{p}}[0,1] \\ &\quad {}+ \frac{ \vert a \vert m \tilde{h_{p}}[0,\mu ] + \vert a \vert \tilde{h_{q}}[0, \mu ] }{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} = \biggl(1+\frac{4}{3}\biggr) \times \frac{4}{30} + \biggl(1+\frac{4}{3}\biggr) \times \frac{4}{15} < 1. \end{aligned}$$

Now, by using Theorem 2.2, the Sturm–Liouville problem (5) has a solution. Also for a better graphical understanding of the problem, the graph of \(q(t)\) is shown in Fig. 1.

Figure 1
figure 1

The graph of \(q(t)\)

3 Continuous dependence

In this part, according to the topics raised in [14], we verify continuous dependence of the solution for the fractional Sturm–Liouville differential equation (1).

Definition 3.1

We say that the solution of the fractional Sturm–Liouville differential equation

$$ \mathcal{D}^{\alpha }\bigl(p(t) \mathcal{D}^{\beta } \nu (t) \bigr) + q(t) \nu (t)= h(t) f\bigl(\nu (t)\bigr) $$
(6)

is continuously dependent on \(\lambda _{i}\) whenever, for each \(\epsilon >0\), there exists \(\delta (\epsilon ) > 0\) such that, for any two solutions ν and ν̃ of (6), that ν satisfies conditions (1) and ν̃ satisfies the following initial conditions:

$$ \textstyle\begin{cases} \tilde{\nu }^{(i)}(0)=\mathcal{D}^{(\beta +j)} \tilde{\nu }(0)=0 \quad (\text{for } 0 \leq j \leq n-1 \text{ and } 0 \leq i \leq k-1), \\ a\tilde{\nu }(\mu )= \sum_{i=1}^{n_{0}} \tilde{\lambda _{i}} \mathcal{I}^{p_{i}}\nu (a_{i}), \end{cases} $$
(7)

\(\sum_{i=1}^{n_{0}} | \lambda _{i} - \tilde{\lambda _{i}}| < \delta \) implies \(\|\nu - \tilde{\nu } \| < \epsilon \).

In the next result, we again suppose that the maps \(q,h:[0,1] \to \mathbb{R}\) may be singular at some points in \([0,1]\) and the function \(p: [0,1] \to [0, \infty )\) is \(n-1\) times differentiable, but it can be zero at some points in \([0,1]\).

Theorem 3.2

Assume that \(\alpha , \beta \geq 1\), \(\alpha \in [n-1,n)\), \(\beta \in [k-1,k)\), \(n_{0}\) is a natural number, \(\mu , a_{1},\dots ,a_{n_{0}} \in [0,1]\), \(a, \lambda _{1},\dots ,\lambda _{n_{0}} \in \mathbb{R}\), \(p_{i} \geq 0\) with \(a \neq \sum_{i=1}^{n_{0}} \frac{\lambda _{i} a_{i}^{p_{i}}}{ \Gamma (\beta +p_{i})}\), \(f: \mathbb{R} \to \mathbb{R}\) is a function such that \(|f(x) -f(y)| \leq \Lambda (|x -y|)\) and \(|f(z)| \leq M(z) + N(z)\) for all \(x,y,z \in \mathbb{R}\), where \(\Lambda , M, N : \mathbb{R^{+}} \to \mathbb{R^{+}}\) are nondecreasing functions with \(\sup_{z \in (0, \infty )} \frac{\Lambda (z)}{z} =Q' \in [0, \infty )\), \(\lim_{\omega \to \infty } \frac{M(\omega )}{\omega } = m \in [0, \infty )\), and \(\lim_{\omega \to \infty } N(\omega ) < \infty \). Suppose that

$$ \tilde{h_{p}}[0,1] = \int _{0}^{1} (1-\xi )^{\alpha +\beta -2} \bigl\vert h( \xi ) \bigr\vert \hat{p}(1,\xi ) \,d\xi < \infty $$

and

$$ \tilde{h_{q}}[0,1] = \int _{0}^{1} (1-\xi )^{\alpha +\beta -2} \bigl\vert h( \xi ) \bigr\vert \hat{p}(1,\xi ) \,d\xi < \infty , $$

where \(\hat{p}(t,\xi ) = \int _{\xi }^{t} \frac{ds}{p(s)}\). If

$$\begin{aligned} & \Biggl( \frac{\Xi }{\Gamma (\alpha ) \Gamma (\beta )} + \frac{\Xi }{\Gamma (\alpha ) } \sum _{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \Biggr) \tilde{h_{p}}[0,1] \\ &\quad {}+ \Biggl( \frac{1}{\Gamma (\alpha ) \Gamma (\beta )} + \frac{1}{\Gamma (\alpha ) } \sum _{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \Biggr) \tilde{q_{p}}[0,1] \\ &\quad {}+ \frac{ \vert a \vert \Xi \tilde{h_{p}}[0,\mu ] + \vert a \vert \tilde{h_{q}}[0, \mu ] }{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} < 1, \end{aligned}$$

then the solutions of the equation \(\mathcal{D}^{\alpha }(p(t) \mathcal{D}^{\beta } \nu (t) ) + q(t) \nu (t)= h(t) f(\nu (t))\) with the initial conditions \(\nu ^{(i)}(0) =\mathcal{D}^{(\beta +j)} \nu (0)=0\) (for \(0 \leq j \leq n-1\) and \(0 \leq i \leq k-1\)) and \(a\nu (\mu )= \sum_{i=1}^{n_{0}} \lambda _{i} \mathcal{I}^{p_{i}} \nu (a_{i})\) are continuously dependent on the coefficients \(\lambda _{i}\), where \(\Delta = a - \sum_{i=1}^{n_{0}} \frac{\lambda _{i} a_{i}^{p_{i}}}{ \Gamma (\beta +p_{i})}\) and \(\Xi = \max \{ Q' , m \} \).

Proof

Since \(\lim_{\omega \to 0^{+}} \frac{\Lambda (\omega )}{\omega } := Q \leq Q'\), we get

$$\begin{aligned} & \Biggl( \frac{m }{\Gamma (\alpha ) \Gamma (\beta )} + \frac{m }{\Gamma (\alpha ) } \sum _{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \Biggr) \tilde{h_{p}}[0,1] \\ &\qquad {}+ \Biggl( \frac{1}{\Gamma (\alpha ) \Gamma (\beta )} + \frac{1}{\Gamma (\alpha ) } \sum _{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \Biggr) \tilde{q_{p}}[0,1] \\ &\qquad {}+ \frac{ \vert a \vert m \tilde{h_{p}}[0,\mu ] + \vert a \vert \tilde{h_{q}}[0, \mu ] }{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \\ &\quad \leq \Biggl( \frac{\Xi }{\Gamma (\alpha ) \Gamma (\beta )} + \frac{\Xi }{\Gamma (\alpha ) } \sum _{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \Biggr) \tilde{h_{p}}[0,1] \\ &\qquad {}+ \Biggl( \frac{1}{\Gamma (\alpha ) \Gamma (\beta )} + \frac{1}{\Gamma (\alpha ) } \sum _{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \Biggr) \tilde{q_{p}}[0,1] \\ &\qquad {}+ \frac{ \vert a \vert \Xi \tilde{h_{p}}[0,\mu ] + \vert a \vert \tilde{h_{q}}[0, \mu ] }{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} < 1. \end{aligned}$$

Using Theorem 2.2, it is obtained that the equation has a solution. Let \(\nu (t)\) and \(\tilde{\nu }(t)\) be two solutions for the problem with initial conditions (7). Then we have

$$\begin{aligned} \tilde{\nu }(t) &= \frac{1}{\Gamma (\beta )} \int _{0}^{t} (t-\zeta )^{ \beta -1} \frac{ ( B_{\alpha }(\zeta ,\tilde{\nu }(\zeta )) - A_{\alpha }(\zeta ,\tilde{\nu }(\zeta )) )}{p(\zeta )} \,d\zeta \\ &\quad {}+ \sum_{i=1}^{n_{0}} \frac{\lambda _{i}}{\Delta \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} (a_{i} - \zeta )^{\beta +p_{i}-1} \frac{ ( B_{\alpha }(\zeta ,\tilde{\nu }(\zeta )) - A_{\alpha }(\zeta ,\tilde{\nu }(\zeta )) )}{p(\zeta )} \,d\zeta \\ &\quad {}- \frac{a}{\Delta \Gamma (\beta )} \int _{0}^{\mu } (\mu -\zeta )^{ \beta -1} \frac{ ( B_{\alpha }(\zeta ,\tilde{\nu }(\zeta )) - A_{\alpha }(s,\tilde{\nu }(\zeta )) )}{p(\zeta )} \,d\zeta , \end{aligned}$$

where \(\tilde{ \Delta } = a - \sum_{i=1}^{n_{0}} \frac{\tilde{ \lambda }_{i} a_{i}^{p_{i}}}{ \Gamma (\beta +p_{i})} \neq 0\). Thus, it results in

$$\begin{aligned} \bigl\vert \nu (t) - \tilde{\nu }(t) \bigr\vert &= \Biggl\vert \frac{1}{\Gamma (\beta )} \int _{0}^{t} (t-\zeta )^{\beta -1} \frac{ B_{\alpha }(\zeta ,\nu (\zeta )) -B_{\alpha }(\zeta ,\tilde{\nu }(\zeta )) }{p(\zeta )} \,d\zeta \\ &\quad {}+ \frac{1}{\Gamma (\beta )} \int _{0}^{t} (t-\zeta )^{\beta -1} \frac{ A_{\alpha }(\zeta , \tilde{\nu }(\zeta )) - A_{\alpha }(\zeta , \nu (\zeta )) }{p(\zeta )} \,d\zeta \\ &\quad {}+ \sum_{i=1}^{n_{0}} \frac{\lambda _{i}}{\Delta \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} (a_{i} - \zeta )^{\beta +p_{i}-1} \frac{ B_{\alpha }(\zeta ,\nu (\zeta )) }{p(\zeta )} \,d\zeta \\ &\quad {}- \sum_{i=1}^{n_{0}} \frac{\tilde{ \lambda }_{i}}{\tilde{\Delta } \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} (a_{i} - \zeta )^{\beta +p_{i}-1} \frac{ B_{\alpha }(\zeta ,\tilde{\nu }(\zeta )) }{p(\zeta )} \,d\zeta \\ &\quad {}+ \sum_{i=1}^{n_{0}} \frac{\tilde{ \lambda }_{i}}{\tilde{\Delta } \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} (a_{i} - \zeta )^{\beta +p_{i}-1} \frac{ A_{\alpha }(\zeta ,\tilde{\nu }(\zeta )) }{p(\zeta )} \,d\zeta \\ &\quad {}- \sum_{i=1}^{n_{0}} \frac{\lambda _{i}}{\Delta \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} (a_{i} - \zeta )^{\beta +p_{i}-1} \frac{ A_{\alpha }(\zeta ,\nu (\zeta )) }{p(\zeta )} \,d\zeta \\ &\quad {}+ \frac{a}{\Delta \Gamma (\beta )} \int _{0}^{\mu } (\mu -\zeta )^{ \beta -1} \frac{A_{\alpha }(\zeta ,\nu (\zeta ))}{p(\zeta )} \,d\zeta \\ &\quad {}- \frac{a}{\tilde{ \Delta } \Gamma (\beta )} \int _{0}^{\mu } (\mu - \zeta )^{\beta -1} \frac{A_{\alpha }(\zeta ,\tilde{\nu }(\zeta ))}{p(\zeta )} \,d\zeta \\ &\quad {}+ \frac{a}{\tilde{ \Delta } \Gamma (\beta )} \int _{0}^{\mu } (\mu - \zeta )^{\beta -1} \frac{B_{\alpha }(\zeta ,\tilde{\nu }(\zeta ))}{p(\zeta )} \,d\zeta \\ &\quad {}- \frac{a}{\Delta \Gamma (\beta )} \int _{0}^{\mu } (\mu -\zeta )^{ \beta -1} \frac{B_{\alpha }(\zeta ,\nu (\zeta ))}{p(\zeta )} \,d\zeta \Biggr\vert \end{aligned}$$

for all \(t \in [0,1]\). Hence, it implies that

$$\begin{aligned} \bigl\vert \nu (t) - \tilde{\nu }(t) \bigr\vert &\leq \frac{1}{\Gamma (\beta )} \int _{0}^{t} (t-\zeta )^{\beta -1} \frac{ \vert B_{\alpha }(\zeta ,\nu (\zeta )) -B_{\alpha }(\zeta ,\tilde{\nu }(\zeta )) \vert }{p(\zeta )} \,d\zeta \\ &\quad {}+ \frac{1}{\Gamma (\beta )} \int _{0}^{t} (t-\zeta )^{\beta -1} \frac{ \vert A_{\alpha }(\zeta , \tilde{\nu }(\zeta )) - A_{\alpha }(\zeta , \nu (\zeta )) \vert }{p(\zeta )} \,d\zeta \\ &\quad {}+ \Biggl\vert \sum_{i=1}^{n_{0}} \frac{\lambda _{i}}{\Delta \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} (a_{i} - \zeta )^{\beta +p_{i}-1} \frac{ B_{\alpha }(\zeta ,\nu (\zeta )) }{p(\zeta )} \,d\zeta \\ &\quad {}- \sum_{i=1}^{n_{0}} \frac{\tilde{ \lambda }_{i}}{\tilde{\Delta } \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} (a_{i} - \zeta )^{\beta +p_{i}-1} \frac{ B_{\alpha }(\zeta ,\tilde{\nu }(\zeta )) }{p(\zeta )} \,d\zeta \Biggr\vert \\ &\quad {}+ \Biggl\vert \sum_{i=1}^{n_{0}} \frac{\tilde{ \lambda }_{i}}{\tilde{\Delta } \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} (a_{i} - \zeta )^{\beta +p_{i}-1} \frac{ A_{\alpha }(\zeta ,\tilde{\nu }(\zeta )) }{p(\zeta )} \,d\zeta \\ &\quad {}- \sum_{i=1}^{n_{0}} \frac{\lambda _{i}}{\Delta \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} (a_{i} - \zeta )^{\beta +p_{i}-1} \frac{ A_{\alpha }(\zeta ,\nu (\zeta )) }{p(\zeta )} \,d\zeta \Biggr\vert \\ &\quad {}+ \frac{ \vert a \vert }{ \Gamma (\beta )} \biggl\vert \frac{1}{\Delta } \int _{0}^{ \mu } (\mu -s)^{\beta -1} \frac{A_{\alpha }(\zeta ,\nu (\zeta ))}{p(\zeta )} \,d\zeta \\ &\quad {}- \frac{1}{\tilde{ \Delta } } \int _{0}^{\mu } (\mu -\zeta )^{\beta -1} \frac{A_{\alpha }(s,\tilde{\nu }(\zeta ))}{p(\zeta )} \,d\zeta \biggr\vert \\ &\quad {}+ \frac{ \vert a \vert }{ \Gamma (\beta )} \biggl\vert \frac{1}{\tilde{\Delta }} \int _{0}^{ \mu } (\mu -\zeta )^{\beta -1} \frac{B_{\alpha }(\zeta ,\tilde{\nu }(\zeta ))}{p(\zeta )} \,d\zeta \\ &\quad {}- \frac{1}{\Delta } \int _{0}^{\mu } (\mu -\zeta )^{\beta -1} \frac{B_{\alpha }(\zeta ,\nu (\zeta ))}{p(\zeta )} \,d\zeta \biggr\vert . \end{aligned}$$
(8)

On the other hand,

$$\begin{aligned} & \int _{0}^{t} (t-\zeta )^{\beta -1} \frac{ \vert B_{\alpha }(\zeta ,\nu (\zeta )) -B_{\alpha }(\zeta ,\tilde{\nu }(\zeta )) \vert }{p(\zeta )} \,d\zeta \\ &\quad \leq \frac{1}{\Gamma (\alpha )} \int _{0}^{t} \int _{0}^{\zeta }\frac{ (t-\zeta )^{\beta -1} (\zeta -\xi )^{\alpha -1} }{p(\zeta )} \bigl\vert h( \xi ) \bigr\vert \bigl\vert f\bigl(\nu (\xi )\bigr) - f\bigl(\tilde{\nu }( \xi )\bigr) \bigr\vert \,d\xi \,d\zeta \\ &\quad \leq \frac{1}{\Gamma (\alpha )} \int _{0}^{t} \int _{0}^{\zeta }\frac{ (t-\zeta )^{\beta -1} (\zeta -\xi )^{\alpha -1} }{p(\zeta )} \bigl\vert h( \xi ) \bigr\vert \Lambda \bigl( \bigl\vert \nu (\xi ) - \tilde{\nu }(\xi ) \bigr\vert \bigr) \,d\xi \,d\zeta \\ &\quad \leq \frac{\Lambda ( \Vert \nu - \tilde{\nu } \Vert )}{\Gamma (\alpha )} \int _{0}^{t} \int _{\xi }^{t} \frac{ (t-\zeta )^{\beta -1} (\zeta -\xi )^{\alpha -1} }{p(\zeta )} \bigl\vert h( \xi ) \bigr\vert \,d\zeta \,d\xi \\ &\quad \leq \frac{\Lambda ( \Vert \nu - \tilde{\nu } \Vert )}{\Gamma (\alpha )} \int _{0}^{t} (t-\zeta )^{\alpha + \beta -2} \bigl\vert h(\xi ) \bigr\vert \hat{p}(t, \xi ) \,d\xi , \end{aligned}$$

and so

$$ \int _{0}^{t} (t-\zeta )^{\beta -1} \frac{ \vert B_{\alpha }(\zeta ,\nu (\zeta )) -B_{\alpha }(\zeta ,\tilde{\nu }(\zeta )) \vert }{p(\zeta )} \,d\zeta \leq \frac{\Lambda ( \Vert \nu - \tilde{\nu } \Vert )}{\Gamma (\alpha )} \tilde{h}_{p}[0,1]. $$

Similarly, it is obtained that

$$ \int _{0}^{t} (t-\zeta )^{\beta -1} \frac{ \vert A_{\alpha }(\zeta ,\tilde{\nu }(\zeta )) -B_{\alpha }(\zeta ,\nu (\zeta )) \vert }{p(\zeta )} \,d\zeta \leq \frac{ \Vert \nu - \tilde{\nu } \Vert }{\Gamma (\alpha )} \tilde{q}_{p}[0,1]. $$

Also, we have

$$\begin{aligned} & \Biggl\vert \sum_{i=1}^{n_{0}} \frac{\lambda _{i}}{\Delta \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} (a_{i} - \zeta )^{\beta +p_{i}-1} \frac{ B_{\alpha }(\zeta ,\nu (\zeta )) }{p(\zeta )} \,d\zeta \\ &\qquad {}- \sum_{i=1}^{n_{0}} \frac{\tilde{ \lambda }_{i}}{\tilde{\Delta } \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} (a_{i} - \zeta )^{\beta +p_{i}-1} \frac{ B_{\alpha }(\zeta ,\tilde{\nu }(\zeta )) }{p(\zeta )} \,d\zeta \Biggr\vert \\ &\quad = \Biggl\vert \sum_{i=1}^{n_{0}} \frac{\lambda _{i}}{\Delta \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} (a_{i} - \zeta )^{\beta +p_{i}-1} \frac{ B_{\alpha }(\zeta ,\nu (\zeta )) }{p(\zeta )} \,d\zeta \\ &\qquad {}- \sum_{i=1}^{n_{0}} \frac{\tilde{ \lambda }_{i}}{\tilde{\Delta } \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} (a_{i} - \zeta )^{\beta +p_{i}-1} \frac{ B_{\alpha }(\zeta ,\tilde{\nu }(\zeta )) }{p(\zeta )} \,d\zeta \\ &\qquad {}+ \sum_{i=1}^{n_{0}} \frac{\lambda _{i}}{\Delta \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} (a_{i} - \zeta )^{\beta +p_{i}-1} \frac{ B_{\alpha }(\zeta ,\tilde{\nu }(\zeta )) }{p(\zeta )} \,d\zeta \\ &\qquad {}- \sum_{i=1}^{n_{0}} \frac{\lambda _{i}}{\Delta \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} (a_{i} - \zeta )^{\beta +p_{i}-1} \frac{ B_{\alpha }(\zeta ,\tilde{\nu }(\zeta )) }{p(\zeta )} \,d\zeta \Biggr\vert \\ &\quad \leq \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} (a_{i} - \zeta )^{\beta +p_{i}-1} \frac{ \vert B_{\alpha }(\zeta , \nu (\zeta ))- B_{\alpha }(\zeta ,\tilde{\nu }(\zeta )) \vert }{p(\zeta )} \,d\zeta \\ &\qquad {}+ \sum_{i=1}^{n_{0}} \frac{ \vert \tilde{\Delta } \lambda _{i} - \Delta \tilde{\lambda _{i}} + \tilde{\Delta } \tilde{\lambda _{i}} - \tilde{\Delta } \tilde{\lambda _{i}} \vert }{ \vert \Delta \tilde{\Delta } \vert \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} (a_{i} - \zeta )^{\beta +p_{i}-1} \frac{ B_{\alpha }(\zeta , \nu (\zeta ))}{p(\zeta )} \,d\zeta \\ &\quad \leq \frac{\Lambda ( \Vert \nu - \tilde{\nu } \Vert )}{\Gamma (\alpha )} \tilde{h}_{p}[0,1] \\ &\qquad {}+ \frac{ \vert \tilde{\Delta } \vert }{\Gamma (\alpha ) \vert \tilde{\Delta } \Delta \vert } \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} - \tilde{\lambda _{i}} \vert }{ \Gamma (\beta +p_{i})} \bigl( M\bigl( \Vert \tilde{\nu } \Vert \bigr) + N \bigl( \Vert \tilde{\nu } \Vert \bigr) \bigr) \tilde{h}_{p}[0,1] \\ &\qquad {}+ \frac{ \vert \tilde{\Delta } - \Delta \vert }{\Gamma (\alpha ) \vert \tilde{\Delta } \Delta \vert } \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{\Gamma (\beta +p_{i})} \bigl( M\bigl( \Vert \tilde{\nu } \Vert \bigr) + N \bigl( \Vert \tilde{\nu } \Vert \bigr) \bigr) \tilde{h}_{p}[0,1]. \end{aligned}$$

Note that \(| \Delta - \tilde{\Delta }| \leq \sum_{i=1}^{n_{0}} \frac{| \lambda _{i} - \tilde{\lambda _{i}}| a_{i}^{p_{i}}}{ \Gamma ( p_{i} +1)}\), and so

$$\begin{aligned} & \Biggl\vert \sum_{i=1}^{n_{0}} \frac{\lambda _{i}}{\Delta \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} (a_{i} - \zeta )^{\beta +p_{i}-1} \frac{ B_{\alpha }(\zeta ,\nu (\zeta )) }{p(\zeta )} \,d\zeta \\ &\qquad {}- \sum_{i=1}^{n_{0}} \frac{\tilde{ \lambda }_{i}}{\tilde{\Delta } \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} (a_{i} - \zeta )^{\beta +p_{i}-1} \frac{ B_{\alpha }(\zeta ,\tilde{\nu }(\zeta )) }{p(\zeta )} \,d\zeta \Biggr\vert \\ &\quad \leq \frac{\Lambda ( \Vert \nu - \tilde{\nu } \Vert )}{\Gamma (\alpha )} \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{\Gamma (\beta +p_{i})} \Biggr) \tilde{h}_{p}[0,1] \\ &\qquad {}+ \frac{M( \Vert \tilde{\nu } \Vert ) + N( \Vert \tilde{\nu } \Vert )}{\Gamma (\alpha ) \vert \Delta \vert } \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} - \tilde{\lambda _{i}} \vert }{ \Gamma (\beta +p_{i})} \Biggr) \tilde{h}_{p}[0,1] \\ &\qquad {}+ \frac{M( \Vert \tilde{\nu } \Vert ) + N( \Vert \tilde{\nu } \Vert )}{ \vert \tilde{\Delta } \Delta \vert \Gamma (\alpha ) } \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} - \tilde{\lambda _{i}} \vert a_{i}^{p_{i}}}{ \Gamma ( p_{i} +1)} \Biggr) \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{\Gamma (\beta +p_{i})} \Biggr) \tilde{h}_{p}[0,1]. \end{aligned}$$

By using a similar method, we can show that

$$\begin{aligned} & \Biggl\vert \sum_{i=1}^{n_{0}} \frac{\tilde{ \lambda }_{i}}{\tilde{\Delta } \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} (a_{i} - \zeta )^{\beta +p_{i}-1} \frac{ A_{\alpha }(\zeta ,\tilde{\nu }(\zeta )) }{p(\zeta )} \,d\zeta \\ &\qquad {}- \sum_{i=1}^{n_{0}} \frac{\lambda _{i}}{\Delta \Gamma (\beta +p_{i})} \int _{0}^{a_{i}} (a_{i} - \zeta )^{\beta +p_{i}-1} \frac{ A_{\alpha }(\zeta ,\nu (\zeta )) }{p(\zeta )} \,d\zeta \Biggr\vert \\ &\quad \leq \frac{ \Vert \nu - \tilde{\nu } \Vert }{\Gamma (\alpha )} \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{\Gamma (\beta +p_{i})} \Biggr) \tilde{q}_{p}[0,1] + \frac{ \Vert \tilde{\nu } \Vert }{\Gamma (\alpha ) \vert \Delta \vert } \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} - \tilde{\lambda _{i}} \vert }{ \Gamma (\beta +p_{i})} \Biggr) \tilde{q}_{p}[0,1] \\ &\qquad {}+ \frac{ \Vert \tilde{\nu } \Vert }{ \vert \tilde{\Delta } \Delta \vert \Gamma (\alpha ) } \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} - \tilde{\lambda _{i}} \vert a_{i}^{p_{i}}}{ \Gamma ( p_{i} +1)} \Biggr) \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{\Gamma (\beta +p_{i})} \Biggr) \tilde{q}_{p}[0,1] \end{aligned}$$

and

$$\begin{aligned} & \biggl\vert \frac{1}{\Delta } \int _{0}^{\mu } (\mu -\zeta )^{\beta -1} \frac{ A_{\alpha }(\zeta ,\nu (\zeta )) }{p(\zeta )} \,d\zeta - \frac{1}{\tilde{\Delta }} \int _{0}^{\mu } (\mu -\zeta )^{\beta -1} \frac{ A_{\alpha }(\zeta , \tilde{\nu }(\zeta )) }{p(\zeta )} \,d\zeta \biggr\vert \\ &\quad = \biggl\vert \frac{1}{\Delta } \int _{0}^{\mu } (\mu -\zeta )^{\beta -1} \frac{ A_{\alpha }(\zeta ,\nu (\zeta )) }{p(\zeta )} \,d\zeta - \frac{1}{\tilde{\Delta }} \int _{0}^{\mu } (\mu -\zeta )^{\beta -1} \frac{ A_{\alpha }(\zeta , \tilde{\nu }(\zeta )) }{p(\zeta )} \,d\zeta \\ &\qquad {}- \frac{1}{\Delta } \int _{0}^{\mu } (\mu -\zeta )^{\beta -1} \frac{ A_{\alpha }(\zeta , \tilde{\nu }(\zeta )) }{p(\zeta )} \,d\zeta + \frac{1}{\Delta } \int _{0}^{\mu } (\mu -\zeta )^{\beta -1} \frac{ A_{\alpha }(\zeta , \tilde{\nu }(\zeta )) }{p(\zeta )} \,d\zeta \biggr\vert \\ &\quad \leq \frac{1}{ \vert \Delta \vert } \int _{0}^{\mu } (\mu -\zeta )^{\beta -1} \frac{ \vert A_{\alpha }(\zeta ,\nu (\zeta )) - A_{\alpha }(\zeta , \tilde{\nu }(\zeta )) \vert }{p(\zeta )} \,d\zeta \\ &\qquad {} + \biggl\vert \frac{\Delta - \tilde{\Delta }}{\Delta \tilde{\Delta }} \biggr\vert \int _{0}^{\mu } (\mu -\zeta )^{\beta -1} \frac{ \vert A_{\alpha }(\zeta , \tilde{\nu }(\zeta )) \vert }{p(\zeta )} \,d\zeta \\ &\quad \leq \frac{ \Vert \nu - \tilde{\nu } \Vert }{ \vert \Delta \vert \Gamma (\alpha )} \tilde{q}_{p}[0,\mu ] + \frac{ \Vert \tilde{\nu } \Vert }{ \vert \Delta \tilde{\Delta } \vert \Gamma (\alpha ) } \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} - \tilde{\lambda _{i}} \vert a_{i}^{p_{i}}}{ \Gamma (p_{i} + 1)} \Biggr) \tilde{q}_{p}[0,\mu ], \end{aligned}$$

which implies

$$\begin{aligned} & \biggl\vert \frac{1}{\Delta } \int _{0}^{\mu } (\mu -\zeta )^{\beta -1} \frac{ B_{\alpha }(\zeta ,\nu (\zeta )) }{p(\zeta )} \,d\zeta - \frac{1}{\tilde{\Delta }} \int _{0}^{\mu } (\mu -\zeta )^{\beta -1} \frac{ B_{\alpha }(\zeta , \tilde{\nu }(\zeta )) }{p(\zeta )} \,d\zeta \biggr\vert \\ &\quad \leq \frac{ \Lambda ( \Vert \nu - \tilde{\nu } \Vert )}{ \vert \Delta \vert \Gamma (\alpha )} \tilde{h}_{p}[0,\mu ] + \frac{M( \Vert \tilde{\nu } \Vert ) + N( \Vert \tilde{\nu } \Vert )}{ \vert \Delta \tilde{\Delta } \vert \Gamma (\alpha ) } \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} - \tilde{\lambda _{i}} \vert a_{i}^{p_{i}}}{ \Gamma (p_{i} + 1)} \Biggr) \tilde{h}_{p}[0,\mu ]. \end{aligned}$$

Now, by using the above inequalities and (8), it is acquired

$$\begin{aligned} \bigl\vert \nu (t) - \tilde{\nu }(t) \bigr\vert &\leq \frac{\Lambda ( \Vert \nu - \tilde{\nu } \Vert )}{\Gamma (\alpha ) \Gamma (\beta )} \tilde{h}_{p}[0,1] + \frac{ \Vert \nu - \tilde{\nu } \Vert }{\Gamma (\alpha ) \Gamma (\beta )} \tilde{q}_{p}[0,1] \\ &\quad {}+ \frac{\Lambda ( \Vert \nu - \tilde{\nu } \Vert )}{\Gamma (\alpha )} \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{\Gamma (\beta +p_{i})} \Biggr) \tilde{h}_{p}[0,1] \\ &\quad {}+ \frac{M( \Vert \tilde{\nu } \Vert ) + N( \Vert \tilde{\nu } \Vert )}{\Gamma (\alpha ) \vert \Delta \vert } \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} - \tilde{\lambda _{i}} \vert }{ \Gamma (\beta +p_{i})} \Biggr) \tilde{h}_{p}[0,1] \\ &\quad {}+ \frac{M( \Vert \tilde{\nu } \Vert ) + N( \Vert \tilde{\nu } \Vert )}{ \vert \tilde{\Delta } \Delta \vert \Gamma (\alpha ) } \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} - \tilde{\lambda _{i}} \vert a_{i}^{p_{i}}}{ \Gamma ( p_{i} +1)} \Biggr) \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{\Gamma (\beta +p_{i})} \Biggr) \tilde{h}_{p}[0,1] \\ &\quad {}+ \frac{ \Vert \nu - \tilde{\nu } \Vert }{\Gamma (\alpha )} \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{\Gamma (\beta +p_{i})} \Biggr) \tilde{q}_{p}[0,1] + \frac{ \Vert \tilde{\nu } \Vert }{\Gamma (\alpha ) \vert \Delta \vert } \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} - \tilde{\lambda _{i}} \vert }{ \Gamma (\beta +p_{i})} \Biggr) \tilde{q}_{p}[0,1] \\ &\quad {}+ \frac{ \Vert \tilde{\nu } \Vert }{ \vert \tilde{\Delta } \Delta \vert \Gamma (\alpha ) } \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} - \tilde{\lambda _{i}} \vert a_{i}^{p_{i}}}{ \Gamma ( p_{i} +1)} \Biggr) \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{\Gamma (\beta +p_{i})} \Biggr) \tilde{q}_{p}[0,1] \\ &\quad {}+ \frac{ \vert a \vert \Vert \nu - \tilde{\nu } \Vert }{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \tilde{q}_{p}[0,\mu ] + \frac{ \vert a \vert \Vert \tilde{\nu } \Vert }{ \vert \Delta \tilde{\Delta } \vert \Gamma (\alpha ) \Gamma (\beta )} \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} - \tilde{\lambda _{i}} \vert a_{i}^{p_{i}}}{ \Gamma (p_{i} + 1)} \Biggr) \tilde{q}_{p}[0,\mu ] \\ &\quad {}+ \frac{ \vert a \vert \Lambda ( \Vert \nu - \tilde{\nu } \Vert )}{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \tilde{h}_{p}[0,\mu ] \\ &\quad {}+ \frac{ \vert a \vert (M( \Vert \tilde{\nu } \Vert ) + N( \Vert \tilde{\nu } \Vert ))}{ \vert \Delta \tilde{\Delta } \vert \Gamma (\alpha ) \Gamma (\beta )} \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} - \tilde{\lambda _{i}} \vert a_{i}^{p_{i}}}{ \Gamma (p_{i} + 1)} \Biggr) \tilde{h}_{p}[0,\mu ] \end{aligned}$$

for all \(t \in [0,1]\). By the above inequality and taking the supremum norm, we have

$$\begin{aligned} \Vert \nu - \tilde{\nu } \Vert &\leq \frac{\Lambda ( \Vert \nu - \tilde{\nu } \Vert )}{\Gamma (\alpha ) \Gamma (\beta )} \tilde{h}_{p}[0,1] + \frac{ \Vert \nu - \tilde{\nu } \Vert }{\Gamma (\alpha ) \Gamma (\beta )} \tilde{q}_{p}[0,1] \\ &\quad {}+ \frac{\Lambda ( \Vert \nu - \tilde{\nu } \Vert )}{\Gamma (\alpha )} \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{\Gamma (\beta +p_{i})} \Biggr) \tilde{h}_{p}[0,1] \\ &\quad {}+ \frac{M( \Vert \tilde{\nu } \Vert ) + N( \Vert \tilde{\nu } \Vert )}{\Gamma (\alpha ) \vert \Delta \vert } \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} - \tilde{\lambda _{i}} \vert }{ \Gamma (\beta +p_{i})} \Biggr) \tilde{h}_{p}[0,1] \\ &\quad {}+ \frac{M( \Vert \tilde{\nu } \Vert ) + N( \Vert \tilde{\nu } \Vert )}{ \vert \tilde{\Delta } \Delta \vert \Gamma (\alpha ) } \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} - \tilde{\lambda _{i}} \vert a_{i}^{p_{i}}}{ \Gamma ( p_{i} +1)} \Biggr) \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{\Gamma (\beta +p_{i})} \Biggr) \tilde{h}_{p}[0,1] \\ &\quad {}+\frac{ \Vert \nu - \tilde{\nu } \Vert }{\Gamma (\alpha )} \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{\Gamma (\beta +p_{i})} \Biggr) \tilde{q}_{p}[0,1] + \frac{ \Vert \tilde{\nu } \Vert }{\Gamma (\alpha ) \vert \Delta \vert } \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} - \tilde{\lambda _{i}} \vert }{ \Gamma (\beta +p_{i})} \Biggr) \tilde{q}_{p}[0,1] \\ &\quad {}+ \frac{ \Vert \tilde{\nu } \Vert }{ \vert \tilde{\Delta } \Delta \vert \Gamma (\alpha ) } \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} - \tilde{\lambda _{i}} \vert a_{i}^{p_{i}}}{ \Gamma ( p_{i} +1)} \Biggr) \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{\Gamma (\beta +p_{i})} \Biggr) \tilde{q}_{p}[0,1] \\ &\quad {}+ \frac{ \vert a \vert \Vert \nu - \tilde{\nu } \Vert }{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \tilde{q}_{p}[0,\mu ] + \frac{ \vert a \vert \Vert \tilde{\nu } \Vert }{ \vert \Delta \tilde{\Delta } \vert \Gamma (\alpha ) \Gamma (\beta )} \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} - \tilde{\lambda _{i}} \vert a_{i}^{p_{i}}}{ \Gamma (p_{i} + 1)} \Biggr) \tilde{q}_{p}[0,\mu ] \\ &\quad {}+ \frac{ \vert a \vert \Lambda ( \Vert \nu - \tilde{\nu } \Vert )}{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \tilde{h}_{p}[0,\mu ] \\ &\quad {}+ \frac{ \vert a \vert (M( \Vert \tilde{\nu } \Vert ) + N( \Vert \tilde{\nu } \Vert ))}{ \vert \Delta \tilde{\Delta } \vert \Gamma (\alpha ) \Gamma (\beta )} \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} - \tilde{\lambda _{i}} \vert a_{i}^{p_{i}}}{ \Gamma (p_{i} + 1)} \Biggr) \tilde{h}_{p}[0,\mu ]. \end{aligned}$$

Hence,

$$\begin{aligned} & \Vert \nu - \tilde{\nu } \Vert \Biggl( 1- \Biggl[ \frac{\Lambda ( \Vert \nu - \tilde{\nu } \Vert )}{ \Vert \nu - \tilde{\nu } \Vert \Gamma (\alpha ) \Gamma (\beta )} \tilde{h}_{p}[0,1] + \frac{ \tilde{q}_{p}[0,1] }{\Gamma (\alpha ) \Gamma (\beta )} \\ &\qquad {}+ \frac{\Lambda ( \Vert \nu - \tilde{\nu } \Vert )}{ \Vert \nu - \tilde{\nu } \Vert \Gamma (\alpha )} \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{\Gamma (\beta +p_{i})} \Biggr) \tilde{h}_{p}[0,1] \\ &\qquad {}+\frac{ \tilde{q}_{p}[0,1] }{\Gamma (\alpha )} \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{\Gamma (\beta +p_{i})} \Biggr) + \frac{ \vert a \vert \tilde{q}_{p}[0,\mu ]}{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \\ &\qquad {}+ \frac{ \vert a \vert \Lambda ( \Vert \nu - \tilde{\nu } \Vert )}{ \Vert \nu - \tilde{\nu } \Vert \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \tilde{h}_{p}[0,\mu ] \Biggr] \Biggr) \\ &\quad \leq \frac{M( \Vert \tilde{\nu } \Vert ) + N( \Vert \tilde{\nu } \Vert )}{\Gamma (\alpha ) \vert \Delta \vert } \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} - \tilde{\lambda _{i}} \vert }{ \Gamma (\beta +p_{i})} \Biggr) \tilde{h}_{p}[0,1] \\ &\qquad {}+ \frac{M( \Vert \tilde{\nu } \Vert ) + N( \Vert \tilde{\nu } \Vert )}{ \vert \tilde{\Delta } \Delta \vert \Gamma (\alpha ) } \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} - \tilde{\lambda _{i}} \vert a_{i}^{p_{i}}}{ \Gamma ( p_{i} +1)} \Biggr) \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{\Gamma (\beta +p_{i})} \Biggr) \tilde{h}_{p}[0,1] \\ &\qquad {}+ \frac{ \Vert \tilde{\nu } \Vert }{\Gamma (\alpha ) \vert \Delta \vert } \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} - \tilde{\lambda _{i}} \vert }{ \Gamma (\beta +p_{i})} \Biggr) \tilde{q}_{p}[0,1] \\ &\qquad {}+ \frac{ \Vert \tilde{\nu } \Vert }{ \vert \tilde{\Delta } \Delta \vert \Gamma (\alpha ) } \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} - \tilde{\lambda _{i}} \vert a_{i}^{p_{i}}}{ \Gamma ( p_{i} +1)} \Biggr) \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{\Gamma (\beta +p_{i})} \Biggr) \tilde{q}_{p}[0,1] \\ &\qquad {}+ \frac{ \vert a \vert \Vert \tilde{\nu } \Vert }{ \vert \Delta \tilde{\Delta } \vert \Gamma (\alpha ) \Gamma (\beta )} \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} - \tilde{\lambda _{i}} \vert a_{i}^{p_{i}}}{ \Gamma (p_{i} + 1)} \Biggr) \tilde{q}_{p}[0,\mu ] \\ &\qquad {}+ \frac{ \vert a \vert (M( \Vert \tilde{\nu } \Vert ) + N( \Vert \tilde{\nu } \Vert ))}{ \vert \Delta \tilde{\Delta } \vert \Gamma (\alpha ) \Gamma (\beta )} \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} - \tilde{\lambda _{i}} \vert a_{i}^{p_{i}}}{ \Gamma (p_{i} + 1)} \Biggr) \tilde{h}_{p}[0,\mu ]. \end{aligned}$$

If we put

$$\begin{aligned} C&= Q' \Biggl[ \frac{\tilde{h}_{p}[0,1] }{ \Gamma (\alpha ) \Gamma (\beta )} + \frac{ \tilde{h}_{p}[0,1] }{ \Gamma (\alpha )} \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{\Gamma (\beta +p_{i})} \Biggr) + \frac{ \vert a \vert \tilde{h}_{p}[0,\mu ]}{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} \Biggr] \\ &\quad {}+ \frac{ \tilde{q}_{p}[0,1] }{\Gamma (\alpha ) \Gamma (\beta )} + \frac{ \tilde{q}_{p}[0,1] }{\Gamma (\alpha )} \Biggl( \sum _{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{\Gamma (\beta +p_{i})} \Biggr) + \frac{ \vert a \vert \tilde{q}_{p}[0,\mu ]}{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )}, \end{aligned}$$

then it is inferred that

$$\begin{aligned} C &\leq \Biggl( \frac{\Xi }{\Gamma (\alpha ) \Gamma (\beta )} + \frac{\Xi }{\Gamma (\alpha ) } \sum _{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \Biggr) \tilde{h_{p}}[0,1] \\ &\quad {}+ \Biggl( \frac{1}{\Gamma (\alpha ) \Gamma (\beta )} + \frac{1}{\Gamma (\alpha ) } \sum _{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{ \vert \Delta \vert \Gamma (\beta +p_{i})} \Biggr) \tilde{q_{p}}[0,1] \\ &\quad {}+ \frac{ \vert a \vert \Xi \tilde{h_{p}}[0,\mu ] + \vert a \vert \tilde{h_{q}}[0, \mu ] }{ \vert \Delta \vert \Gamma (\alpha ) \Gamma (\beta )} < 1. \end{aligned}$$

Consequently,

$$\begin{aligned} \Vert \nu - \tilde{\nu } \Vert &\leq \frac{1}{1- C} \Biggl( \frac{M( \Vert \tilde{\nu } \Vert ) + N( \Vert \tilde{\nu } \Vert )}{\Gamma (\alpha ) \vert \Delta \vert } \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} - \tilde{\lambda _{i}} \vert }{ \Gamma (\beta +p_{i})} \Biggr) \tilde{h}_{p}[0,1] \\ &\quad {}+ \frac{M( \Vert \tilde{\nu } \Vert ) + N( \Vert \tilde{\nu } \Vert )}{ \vert \tilde{\Delta } \Delta \vert \Gamma (\alpha ) } \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} - \tilde{\lambda _{i}} \vert a_{i}^{p_{i}}}{ \Gamma ( p_{i} +1)} \Biggr) \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{\Gamma (\beta +p_{i})} \Biggr) \tilde{h}_{p}[0,1] \\ &\quad {}+ \frac{ \Vert \tilde{\nu } \Vert }{\Gamma (\alpha ) \vert \Delta \vert } \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} - \tilde{\lambda _{i}} \vert }{ \Gamma (\beta +p_{i})} \Biggr) \tilde{q}_{p}[0,1] \\ &\quad {}+ \frac{ \Vert \tilde{\nu } \Vert }{ \vert \tilde{\Delta } \Delta \vert \Gamma (\alpha ) } \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} - \tilde{\lambda _{i}} \vert a_{i}^{p_{i}}}{ \Gamma ( p_{i} +1)} \Biggr) \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{\Gamma (\beta +p_{i})} \Biggr) \tilde{q}_{p}[0,1] \\ &\quad {}+ \frac{ \vert a \vert \Vert \tilde{\nu } \Vert }{ \vert \Delta \tilde{\Delta } \vert \Gamma (\alpha ) \Gamma (\beta )} \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} - \tilde{\lambda _{i}} \vert a_{i}^{p_{i}}}{ \Gamma (p_{i} + 1)} \Biggr) \tilde{q}_{p}[0,\mu ] \\ &\quad {}+ \frac{ \vert a \vert (M( \Vert \tilde{\nu } \Vert ) + N( \Vert \tilde{\nu } \Vert ))}{ \vert \Delta \tilde{\Delta } \vert \Gamma (\alpha ) \Gamma (\beta )} \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} - \tilde{\lambda _{i}} \vert a_{i}^{p_{i}}}{ \Gamma (p_{i} + 1)} \Biggr) \tilde{h}_{p}[0,\mu ] \Biggr). \end{aligned}$$

Now, choose \(\delta > 0\) such that

$$\begin{aligned} &\frac{1}{1- C} \Biggl[ \frac{M( \Vert \tilde{\nu } \Vert ) + N( \Vert \tilde{\nu } \Vert )}{\Gamma (\alpha ) \vert \Delta \vert } \max_{1 \leq i \leq n_{0}} \biggl\{ \frac{1}{ \Gamma (\beta +p_{i})} \biggr\} \tilde{h}_{p}[0,1] \\ &\quad {}+ \frac{M( \Vert \tilde{\nu } \Vert ) + N( \Vert \tilde{\nu } \Vert )}{ \vert \tilde{\Delta } \Delta \vert \Gamma (\alpha ) } \max_{1 \leq i \leq n_{0}} \biggl\{ \frac{ a_{i}^{p_{i}}}{ \Gamma (p_{i} +1)} \biggr\} \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{\Gamma (\beta +p_{i})} \Biggr) \tilde{h}_{p}[0,1] \\ &\quad {}+ \frac{ \Vert \tilde{\nu } \Vert }{\Gamma (\alpha ) \vert \Delta \vert } \max_{1 \leq i \leq n_{0}} \biggl\{ \frac{1}{ \Gamma (\beta +p_{i})} \biggr\} \tilde{q}_{p}[0,1] \\ &\quad {}+ \frac{ \Vert \tilde{\nu } \Vert }{ \vert \tilde{\Delta } \Delta \vert \Gamma (\alpha ) } \max_{1 \leq i \leq n_{0}} \biggl\{ \frac{ a_{i}^{p_{i}}}{ \Gamma (p_{i} +1)} \biggr\} \Biggl( \sum_{i=1}^{n_{0}} \frac{ \vert \lambda _{i} \vert }{\Gamma (\beta +p_{i})} \Biggr) \tilde{q}_{p}[0,1] \\ &\quad {}+ \frac{ \vert a \vert \Vert \tilde{\nu } \Vert }{ \vert \Delta \tilde{\Delta } \vert \Gamma (\alpha ) \Gamma (\beta )} \max_{1 \leq i \leq n_{0}} \biggl\{ \frac{ a_{i}^{p_{i}}}{ \Gamma (p_{i} +1)} \biggr\} \tilde{q}_{p}[0,\mu ] \\ &\quad {}+ \frac{ \vert a \vert (M( \Vert \tilde{\nu } \Vert ) + N( \Vert \tilde{\nu } \Vert ))}{ \vert \Delta \tilde{\Delta } \vert \Gamma (\alpha ) \Gamma (\beta )} \max_{1 \leq i \leq n_{0}} \biggl\{ \frac{ a_{i}^{p_{i}}}{ \Gamma (p_{i} +1)} \biggr\} \tilde{h}_{p}[0,\mu ] \Biggr] \delta < \epsilon . \end{aligned}$$

Thus, \(\sum_{i=1}^{n_{0}} | \lambda _{i} - \tilde{\lambda _{i}}|< \delta \), which implies that \(\| \nu - \tilde{\nu } \| < \epsilon \). This completes the proof. □

4 Conclusion

Different versions of the Sturm–Liouville have been studied by researchers during the last decades. In this work, we review a strong singular version of this important and well-known equation. The existence of a solution for a fractional order version of the Sturm–Liouville differential equation with generalized boundary conditions is investigated. Using inequalities and controlling functions lets us control singular points, especially strong singularity in fractional differential equations to be considered, so by the controlling functions and the fixed point theory, we control the strong singular points and prove the existence of a solution. The methods are novel, and a lot of differential equations could be examined in this way. In the following, by introducing the concept of continuous dependence for the generalized equation of Sturm–Liouville, we indicate that the solutions of the fractional strong singular version of Sturm–Liouville equation are dependent on the existent coefficients in the initial conditions, and any change can impact the solution of the equation. The existence of the strong singular points in this version of the Sturm–Liouville differential equation as well as the applied techniques are the most prominent novelty in this article. Likewise, these techniques can be used for investigating the singular version of other differential equations. An example is presented to demonstrate our main result.