Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Saved research
Cart
  1. Home
  2. Numerische Mathematik
  3. Article

Pricing early-exercise and discrete barrier options by fourier-cosine series expansions

  • Open access
  • Published: 20 August 2009
  • Volume 114, pages 27–62, (2009)
  • Cite this article

You have full access to this open access article

Download PDF
View saved research
Numerische Mathematik Aims and scope Submit manuscript
Pricing early-exercise and discrete barrier options by fourier-cosine series expansions
Download PDF
  • F. Fang1 &
  • C. W. Oosterlee2 
  • 3012 Accesses

  • 241 Citations

  • 11 Altmetric

  • Explore all metrics

Abstract

We present a pricing method based on Fourier-cosine expansions for early-exercise and discretely-monitored barrier options. The method works well for exponential Lévy asset price models. The error convergence is exponential for processes characterized by very smooth (\({{\rm{C}}^{\infty}[a,b]\in\mathbb {R}}\)) transitional probability density functions. The computational complexity is O((M − 1)N log N) with N a (small) number of terms from the series expansion, and M, the number of early-exercise/monitoring dates. This paper is the follow-up of (Fang and Oosterlee in SIAM J Sci Comput 31(2):826–848, 2008) in which we presented the impressive performance of the Fourier-cosine series method for European options.

Article PDF

Download to read the full article text

Similar content being viewed by others

Pricing early-exercise and discrete barrier options by Shannon wavelet expansions

Article 02 January 2017

Quantization meets Fourier: a new technology for pricing options

Article 06 October 2018

On Autoregressive Measurement Errors in a Two-Factor Model

Chapter © 2024

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Actuarial Mathematics
  • Approximations and Expansions
  • Fourier Analysis
  • Mathematical Finance
  • Quantitative Finance
  • Stochastic Integrals

References

  1. Almendral A., Oosterlee C.W.: Accurate evaluation of European and American options under the CGMY process. SIAM J. Sci. Comput. 29, 93–117 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Almendral A., Oosterlee C.W.: On American options under the Variance Gamma process. Appl. Math. Finance 14(2), 131–152 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Andricopoulos A.D., Widdicks M., Duck P.W., Newton D.P.: Universal option valuation using quadrature methods. J. Fin. Econ. 67, 447–471 (2003)

    Article  Google Scholar 

  4. Andricopoulos A.D., Widdicks M., Duck P.W., Newton D.P.: Extending quadrature methods to value multi-asset and complex path dependent options. J. Fin. Econ. 83, 471–499 (2007)

    Article  Google Scholar 

  5. Barndorff-Nielsen O.E.: Normal inverse Gaussian distributions and stochastic volatility modelling. Scand. J. Stat. 24, 1–13 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Boyd J.P.: Chebyshev and Fourier Spectral Methods. Springer, Berlin (1989)

    Google Scholar 

  7. Broadie M., Yamamoto Y.: Application of the fast Gauss transform to option pricing. Manag. Sci. 49(8), 1071–1088 (2003)

    Article  Google Scholar 

  8. Broadie M., Yamamoto Y.: A double-exponential fast Gauss transform for pricing discrete path-dependent options. Oper. Res. 53(5), 764–779 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cariboni J., Schoutens W.: Pricing credit default swaps under Lévy models. J. Comp. Finance 10(4), 71–91 (2008)

    Google Scholar 

  10. Carr P.P., Geman H., Madan D.B., Yor M.: The fine structure of asset returns: an empirical investigation. J. Bus. 75, 305–332 (2002)

    Article  Google Scholar 

  11. Carr P.P., Madan D.B.: Option valuation using the Fast Fourier Transform. J. Comp. Finance 2, 61–73 (1999)

    Google Scholar 

  12. Chang C.-C., Chung S.-L., Stapleton R.C.: Richardson extrapolation technique for pricing American-style options. J. Futures Markets 27(8), 791–817 (2007)

    Article  Google Scholar 

  13. Cont R., Tankov P.: Financial Modelling with Jump Processes. Chapman and Hall, Boca Raton, FL (2004)

    MATH  Google Scholar 

  14. Dempster, M.A.H., Hong, S.S.G.: Spread option valuation and the Fast Fourier transform. Techn. Rep. WP 26/2000, the Judge Inst. Manag. Studies, University Cambridge (2000)

  15. Duffie D., Pan J., Singleton K.J.: Transform analysis and asset pricing for affine jump-diffusions. Econometrica 68, 1343–1376 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Duffie D., Filipovic D., Schachermayer W.: Affine processes and applications in finance. Ann. Appl. Probab. 13(3), 984–1053 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Eydeland A.: A fast algorithm for computing integrals in function spaces: financial applications. Comput. Econ. 7(4), 277–285 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fang F., Oosterlee C.W.: A novel option pricing method based on Fourier-cosine series expansions. SIAM J. Sci. Comput. 31(2), 826–848 (2008)

    Article  MathSciNet  Google Scholar 

  19. Feng L., Linetsky V.: Pricing discretely monitored barrier options and defaultable bonds in Lévy process models: a fast Hilbert transform approach. Math. Finance 18(3), 337–384 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Haug, E.G.: Barrier put-call transformations, see http://www.smartquant.com/references/OptionPricing/option27.pdf

  21. Hirsa A., Madan D.B.: Pricing American options under Variance Gamma. J. Comp. Finance 7, 63–80 (2004)

    Google Scholar 

  22. Howison S.: A matched asymptotic expansions approach to continuity corrections for discretely sampled options. Part 2: Bermudanoptions. Appl. Math. Finance 14(1), 91–104 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Jackson, K., Jaimungal, S., Surkov, V.: Option pricing with regime switching Lévy processes using Fourier space time-stepping. In: Proc. 4th IASTED Intern. Conf. Financial Engin. Applic., pp. 92–97 (2007)

  24. Kou S.G.: A jump diffusion model for option pricing. Manag. Sci. 48(8), 1086–1101 (2002)

    Article  Google Scholar 

  25. Lord R., Fang F., Bervoets F., Oosterlee C.W.: A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes. SIAM J. Sci. Comput. 30, 1678–1705 (2008)

    Article  MathSciNet  Google Scholar 

  26. Madan D.B., Carr P.R., Chang E.C.: The Variance Gamma process and option pricing. Eur. Finance Rev. 2, 79–105 (1998)

    Article  MATH  Google Scholar 

  27. Merton R.: Option pricing when underlying stock returns are discontinuous. J. Financial Econ. 3, 125–144 (1976)

    Article  MATH  Google Scholar 

  28. O’Sullivan, C.: Path dependent option pricing under Lévy processes EFA 2005 Moscow Meetings Paper, Available at SSRN: http://ssrn.com/abstract=673424, 2005

  29. Sato, K.-I.: Basic results on Lévy processes. In: Lévy processes, pp. 3–37. Birkhäuser Boston, Boston (2001)

  30. Schoutens W.: Lévy Processes in Finance: Pricing Financial Derivatives. Wiley, London (2003)

    Google Scholar 

  31. Singleton K.J., Umantsev L.: Pricing coupon-bond options and swaptions in affine term structure models. Math. Finance 12(4), 427–446 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. Surkov, V.: Parallel option pricing with Fourier space time-stepping method on graphics processing units. Preprint Univ. of Toronto, 2007. See: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1020207

  33. Taleb N.: Dynamic Hedging. Wiley, New York (2002)

    Google Scholar 

  34. Wang I., Wan J.W., Forsyth P.: Robust numerical valuation of European and American options under the CGMY process. J. Comp. Finance 10(4), 31–70 (2007)

    Google Scholar 

  35. Wilmott P.: Derivatives: The Theory and Practice of Financial Engineering. Wiley Frontiers in Finance Series, London (1998)

    Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands

    F. Fang

  2. CWI, Centrum Wiskunde and Informatica, Amsterdam, The Netherlands

    C. W. Oosterlee

Authors
  1. F. Fang
    View author publications

    Search author on:PubMed Google Scholar

  2. C. W. Oosterlee
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to F. Fang.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Cite this article

Fang, F., Oosterlee, C.W. Pricing early-exercise and discrete barrier options by fourier-cosine series expansions. Numer. Math. 114, 27–62 (2009). https://doi.org/10.1007/s00211-009-0252-4

Download citation

  • Received: 19 June 2008

  • Revised: 22 May 2009

  • Published: 20 August 2009

  • Issue date: November 2009

  • DOI: https://doi.org/10.1007/s00211-009-0252-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Mathematics Subject Classification (2000)

  • 65D30
  • 91B24
  • 65T40

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2026 Springer Nature