Table 1 Performance metrics of the proposed model for prediction of sNEC
Sensitivity | Specificity | PLR | NLR | PPV | NPV | F1-score | AUROC | Global accuracy | Post-test probability | |
|---|---|---|---|---|---|---|---|---|---|---|
Linear SVM | 0.6812 | 0.6508 | 1.9911 | 0.4938 | 0.6905 | 0.6667 | 0.6771 | 0.6850 | 0.6812 | 0.5413 |
Radial SVM | 0.6913 | 0.6430 | 1.9933 | 0.4864 | 0.6905 | 0.6698 | 0.6840 | 0.6736 | 0.6913 | 0.5410 |
Logistic regression | 0.6857 | 0.6514 | 1.9943 | 0.4849 | 0.6894 | 0.6652 | 0.6822 | 0.6836 | 0.6857 | 0.5434 |
KNN | 0.5012 | 0.6011 | 1.2938 | 0.8373 | 0.5963 | 0.5428 | 0.4544 | 0.6042 | 0.5012 | 0.4310 |
XGBOOST | 0.6314 | 0.6353 | 1.7597 | 0.5833 | 0.6580 | 0.6186 | 0.6280 | 0.6461 | 0.6314 | 0.5118 |
LightGBM | 0.6406 | 0.6489 | 1.8517 | 0.5557 | 0.6762 | 0.6364 | 0.6328 | 0.6534 | 0.6406 | 0.5246 |
Random forest | 0.6656 | 0.6644 | 2.0607 | 0.5098 | 0.6925 | 0.6552 | 0.6597 | 0.6869 | 0.6656 | 0.5467 |
Proposed model | 0.7049 | 0.6496 | 2.0297 | 0.4564 | 0.7010 | 0.6867 | 0.6983 | 0.7210 | 0.7049 | 0.5486 |