Skip to main content
Account

Table 1 Performance metrics of the proposed model for prediction of sNEC

From: Machine learning-based analysis for prediction of surgical necrotizing enterocolitis in very low birth weight infants using perinatal factors: a nationwide cohort study

 

Sensitivity

Specificity

PLR

NLR

PPV

NPV

F1-score

AUROC

Global accuracy

Post-test probability

Linear SVM

0.6812

0.6508

1.9911

0.4938

0.6905

0.6667

0.6771

0.6850

0.6812

0.5413

Radial SVM

0.6913

0.6430

1.9933

0.4864

0.6905

0.6698

0.6840

0.6736

0.6913

0.5410

Logistic regression

0.6857

0.6514

1.9943

0.4849

0.6894

0.6652

0.6822

0.6836

0.6857

0.5434

KNN

0.5012

0.6011

1.2938

0.8373

0.5963

0.5428

0.4544

0.6042

0.5012

0.4310

XGBOOST

0.6314

0.6353

1.7597

0.5833

0.6580

0.6186

0.6280

0.6461

0.6314

0.5118

LightGBM

0.6406

0.6489

1.8517

0.5557

0.6762

0.6364

0.6328

0.6534

0.6406

0.5246

Random forest

0.6656

0.6644

2.0607

0.5098

0.6925

0.6552

0.6597

0.6869

0.6656

0.5467

Proposed model

0.7049

0.6496

2.0297

0.4564

0.7010

0.6867

0.6983

0.7210

0.7049

0.5486

  1. Pre-test probability is 0.6019
  2. PLR positive likelihood ratio, NLR negative likelihood ratio, PPV positive predictive value, NPV negative predictive value, SVM support vector machine, KNN K-nearest neighbors, XGBOOST extreme gradient boosting, LightGBM light gradient-boosting machine