1 Introduction

Let us recall some definitions of various convex functions.

Definition 1 A function f:IR=(,)R is said to be convex if

f ( λ x + ( 1 λ ) y ) λf(x)+(1λ)f(y)
(1)

holds for all x,yI and λ[0,1].

Definition 2 ([1])

For f:[0,b]R and m(0,1], if

f ( t x + m ( 1 t ) y ) tf(x)+m(1t)f(y)
(2)

is valid for all x,y[0,b] and t[0,1], then we say that f(x) is an m-convex function on [0,b].

Definition 3 ([2])

For f:[0,b]R and (α,m)(0,1]×(0,1], if

f ( t x + m ( 1 t ) y ) t α f(x)+m ( 1 t α ) f(y)
(3)

is valid for all x,y[0,b] and t[0,1], then we say that f(x) is an (α,m)-convex function on [0,b].

Definition 4 ([35])

A set S R n is said to be invex with respect to the map η:S×S R n if for every x,yS and t[0,1]

y+tη(x,y)S.
(4)

Definition 5 ([6])

Let S R n be an invex set with respect to η:S×S R n . For every x,yS, the η-path P x v joining the points x and v=x+η(y,x) is defined by

P x v = { z z = x + t η ( y , x ) , t [ 0 , 1 ] } .
(5)

Definition 6 ([4])

Let S R n be an invex set with respect to η:S×S R n . A function f:SR is said to be preinvex with respect to η, if for every x,yS and t[0,1],

f ( y + t η ( x , y ) ) tf(x)+(1t)f(y).
(6)

Let us reformulate some inequalities of Hermite-Hadamard type for the above mentioned convex functions.

Theorem 1 ([[7], Theorem 2.2])

Let f: I RR be a differentiable mapping and a,b I with a<b. If | f | is convex on [a,b], then

| f ( a ) + f ( b ) 2 1 b a a b f ( x ) d x | b a 8 ( | f ( a ) | + | f ( b ) | ) .
(7)

Theorem 2 ([8, 9])

Let f: R 0 =[0,)R be m-convex and m(0,1]. If fL([a,b]) for 0a<b<, then

1 b a a b f(x)dxmin { f ( a ) + m f ( b / m ) 2 , m f ( a / m ) + f ( b ) 2 } .
(8)

Theorem 3 ([[10], Theorem 3.1])

Let I R 0 be an open real interval and let f:IR be a differentiable function on I such that f L([a,b]) for 0a<b<. If | f | q is (α,m)-convex on [a,b] for some given numbers m,α(0,1] and q1, then

| f ( a ) + f ( b ) 2 1 b a a b f ( x ) d x | b a 2 ( 1 2 ) 1 1 / q min { [ v 1 | f ( a ) | q + v 2 m | f ( b m ) | q ] 1 / q , [ v 2 m | f ( a m ) | q + v 1 | f ( b ) | q ] 1 / q } ,

where

v 1 = 1 ( α + 1 ) ( α + 2 ) ( α + 1 2 α ) and v 2 = 1 ( α + 1 ) ( α + 2 ) ( α 2 + α + 2 2 1 2 α ) .

Theorem 4 ([[4], Theorem 2.1])

Let AR be an open invex subset with respect to θ:A×AR and let f:AR be a differentiable function. If | f | is preinvex on A, then for every a,bA with θ(a,b)0 we have

| f ( b ) + f ( b + θ ( a , b ) ) 2 1 θ ( a , b ) b b + θ ( a , b ) f ( x ) d x | | θ ( a , b ) | 8 [ | f ( a ) | + | f ( b ) | ] .
(9)

For more information on Hermite-Hadamard type inequalities for various convex functions, please refer to recently published articles [1121] and closely related references therein.

In this article, we will introduce a new notion ‘α-preinvex function’, establish an integral identity for such a kind of functions, and find some Hermite-Hadamard type integral inequalities for a function that the power of the absolute value of its first derivative is α-preinvex.

2 A new definition and a lemma

The so-called ‘α-preinvex function’ may be introduced as follows.

Definition 7 Let S R n be an invex set with respect to η:S×S R n . A function f:SR is said to be α-preinvex with respect to η for α(0,1], if for every x,yS and t[0,1],

f ( y + t η ( x , y ) ) t α f(x)+ ( 1 t α ) f(y).
(10)

Remark 1 If α=1 and f(x) is an α-preinvex function, then f(x) is a preinvex function.

For establishing our new integral inequalities of Hermite-Hadamard type for α-preinvex functions, we need the following integral identity.

Lemma 1 Let AR be an open invex subset with respect to θ:A×AR and let a,bA with θ(a,b)0. If f:AR is a differentiable function and f is integrable on the θ-path P b c : c=b+θ(a,b), then

1 2 [ f ( b ) + f ( b + θ ( a , b ) ) 2 + f ( 2 b + θ ( a , b ) 2 ) ] 1 θ ( a , b ) b b + θ ( a , b ) f ( x ) d x = θ ( a , b ) 4 0 1 ( 1 2 t ) [ f ( b + 1 t 2 θ ( a , b ) ) + f ( b + 2 t 2 θ ( a , b ) ) ] d t .

Proof Since a,bA and A is an invex set with respect to θ, for every t[0,1], we have b+tθ(a,b)A. Integrating by parts gives

0 1 ( 1 2 t ) [ f ( b + 1 t 2 θ ( a , b ) ) + f ( b + 2 t 2 θ ( a , b ) ) ] d t = 2 θ ( a , b ) [ ( 1 2 t ) f ( b + 1 t 2 θ ( a , b ) ) | 0 1 + 0 1 f ( b + 1 t 2 θ ( a , b ) ) d t + ( 1 2 t ) f ( b + 2 t 2 θ ( a , b ) ) | 0 1 + 0 1 f ( b + 2 t 2 θ ( a , b ) ) d t ] = 2 θ ( a , b ) [ 1 2 f ( b ) + 1 2 f ( 2 b + θ ( a , b ) 2 ) 0 1 f ( b + 1 t 2 θ ( a , b ) ) d t ] + 2 θ ( a , b ) [ 1 2 f ( 2 b + θ ( a , b ) 2 ) + 1 2 f ( b + θ ( a , b ) ) 0 1 f ( b + 2 t 2 θ ( a , b ) ) d t ] = 2 θ ( a , b ) [ f ( b ) + f ( b + θ ( a , b ) ) 2 + f ( 2 b + θ ( a , b ) 2 ) ] 4 θ 2 ( a , b ) b b + θ ( a , b ) f ( x ) d x .

The proof of Lemma 1 is completed. □

3 Some new integral inequalities of Hermite-Hadamard type

We are now in a position to establish some Hermite-Hadamard type integral inequalities for a function that the power of the absolute value of its first derivative is α-preinvex.

Theorem 5 Let AR be an invex subset with respect to θ:A×AR and a,bA with θ(a,b)0. Suppose that f:AR is a differentiable function, f is integrable on the θ-path P b c : c=b+θ(a,b), and α(0,1]. If | f | q is α-preinvex on A for q1, then

| 1 2 [ f ( b ) + f ( b + θ ( a , b ) ) 2 + f ( 2 b + θ ( a , b ) 2 ) ] 1 θ ( a , b ) b b + θ ( a , b ) f ( x ) d x | | θ ( a , b ) | 16 [ 1 ( α + 1 ) ( α + 2 ) 2 2 α ] 1 / q { [ 2 ( 1 + α 2 α ) | f ( a ) | q + ( 2 2 α + 1 2 + α ( 3 × 2 α 2 ) 2 α + α 2 2 2 α ) | f ( b ) | q ] 1 / q + [ ( α ( 2 α + 1 1 ) 2 α + 1 + 2 × 3 α + 2 ( 2 α + 1 ) 2 α + 3 ) | f ( a ) | q + ( α 2 2 2 α + ( α ( 1 2 α 1 ) + 4 + 5 × 2 α ) 2 α + 1 2 × 3 α + 2 ) | f ( b ) | q ] 1 / q } .

Proof Since b+tθ(a,b)A for every t[0,1], by Lemma 1 and Hölder’s inequality, we have

| 1 2 [ f ( b ) + f ( b + θ ( a , b ) ) 2 + f ( 2 b + θ ( a , b ) 2 ) ] 1 θ ( a , b ) b b + θ ( a , b ) f ( x ) d x | | θ ( a , b ) | 4 0 1 | 1 2 t | [ | f ( b + 1 t 2 θ ( a , b ) ) | + | f ( b + 2 t 2 θ ( a , b ) ) | ] d t | θ ( a , b ) | 4 ( 0 1 | 1 2 t | d t ) 1 1 / q { [ 0 1 | 1 2 t | | f ( b + 1 t 2 θ ( a , b ) ) | q d t ] 1 / q + [ 0 1 | 1 2 t | | f ( b + 2 t 2 θ ( a , b ) ) | q d t ] 1 / q } .
(11)

Using the α-preinvexity of | f | q , we have

0 1 | 1 2 t | | f ( b + 1 t 2 θ ( a , b ) ) | q d t 0 1 | 1 2 t | [ ( 1 t 2 ) α | f ( a ) | q + ( 1 ( 1 t 2 ) α ) | f ( b ) | q ] d t = 1 ( α + 1 ) ( α + 2 ) 2 2 ( α + 1 ) [ 2 ( 1 + α 2 α ) | f ( a ) | q + ( 2 2 α + 1 2 + α ( 3 × 2 α 2 ) 2 α + α 2 2 2 α ) | f ( b ) | q ]

and

0 1 | 1 2 t | | f ( b + 2 t 2 θ ( a , b ) ) | q d t 0 1 | 1 2 t | [ ( 2 t 2 ) α | f ( a ) | q + ( 1 ( 2 t 2 ) α ) | f ( b ) | q ] d t = 1 ( α + 1 ) ( α + 2 ) 2 2 ( α + 1 ) [ ( α ( 2 α + 1 1 ) 2 α + 1 + 2 × 3 α + 2 ( 2 α + 1 ) 2 α + 3 ) × | f ( a ) | q + ( α 2 2 2 α + ( α ( 1 2 α 1 ) + 4 + 5 × 2 α ) 2 α + 1 2 × 3 α + 2 ) | f ( b ) | q ] .

Substituting the above two inequalities into (11) yields

| 1 2 [ f ( b ) + f ( b + θ ( a , b ) ) 2 + f ( 2 b + θ ( a , b ) 2 ) ] 1 θ ( a , b ) b b + θ ( a , b ) f ( x ) d x | | θ ( a , b ) | 4 ( 0 1 | 1 2 t | d t ) 1 1 / q { [ 0 1 | 1 2 t | ( ( 1 t 2 ) α | f ( a ) | q + ( 1 ( 1 t 2 ) α ) | f ( b ) | q ) d t ] 1 / q + [ 0 1 | 1 2 t | ( ( 2 t 2 ) α | f ( a ) | q + ( 1 ( 2 t 2 ) α ) | f ( b ) | q ) d t ] 1 / q } = | θ ( a , b ) | 4 ( 1 4 ) 1 1 / q [ 1 ( α + 1 ) ( α + 2 ) 2 2 ( α + 1 ) ] 1 / q { [ 2 ( 1 + α 2 α ) | f ( a ) | q + ( 2 2 α + 1 2 + α ( 3 × 2 α 2 ) 2 α + α 2 2 2 α ) | f ( b ) | q ] 1 / q + [ ( α ( 2 α + 1 1 ) 2 α + 1 + 2 × 3 α + 2 ( 2 α + 1 ) 2 α + 3 ) | f ( a ) | q + ( α 2 2 2 α + ( α ( 1 2 α 1 ) + 4 + 5 × 2 α ) 2 α + 1 2 × 3 α + 2 ) | f ( b ) | q ] 1 / q } .

The proof of Theorem 5 is completed. □

Corollary 1 Under the conditions of Theorem  5, if α=1, we have

| 1 2 [ f ( b ) + f ( b + θ ( a , b ) ) 2 + f ( 2 b + θ ( a , b ) 2 ) ] 1 θ ( a , b ) b b + θ ( a , b ) f ( x ) d x | | θ ( a , b ) | 16 { [ | f ( a ) | q + 3 | f ( b ) | q 4 ] 1 / q + [ 3 | f ( a ) | q + | f ( b ) | q 4 ] 1 / q } .

Theorem 6 Let AR be an invex subset with respect to θ:A×AR and a,bA with θ(a,b)0. Suppose that f:AR is a differentiable function, f is integrable on the θ-path P b c : c=b+θ(a,b), and α(0,1]. If | f | q is α-preinvex on A for q>1, then

| 1 2 [ f ( b ) + f ( b + θ ( a , b ) ) 2 + f ( 2 b + θ ( a , b ) 2 ) ] 1 θ ( a , b ) b b + θ ( a , b ) f ( x ) d x | | θ ( a , b ) | 8 ( q 1 2 q 1 ) 1 1 / q [ 1 ( α + 1 ) 2 α ] 1 / q { [ | f ( a ) | q + ( ( α + 1 ) 2 α 1 ) | f ( b ) | q ] 1 / q + [ ( 2 α + 1 1 ) | f ( a ) | q + ( 1 ( 1 α ) 2 α ) | f ( b ) | q ] 1 / q } .

Proof Since b+tθ(a,b)A for every t[0,1], by Lemma 1, Hölder’s inequality, and the α-preinvexity of | f | q , we have

| 1 2 [ f ( b ) + f ( b + θ ( a , b ) ) 2 + f ( 2 b + θ ( a , b ) 2 ) ] 1 θ ( a , b ) b b + θ ( a , b ) f ( x ) d x | | θ ( a , b ) | 4 0 1 | 1 2 t | [ | f ( b + 1 t 2 θ ( a , b ) ) | + | f ( b + 2 t 2 θ ( a , b ) ) | ] d t | θ ( a , b ) | 4 ( 0 1 | 1 2 t | q / ( q 1 ) d t ) 1 1 / q { [ 0 1 | f ( b + 1 t 2 θ ( a , b ) ) | q d t ] 1 / q + [ 0 1 | f ( b + 2 t 2 θ ( a , b ) ) | q d t ] 1 / q } | θ ( a , b ) | 4 ( 0 1 | 1 2 t | q / ( q 1 ) d t ) 1 1 / q × { [ 0 1 ( ( 1 t 2 ) α | f ( a ) | q + ( 1 ( 1 t 2 ) α ) | f ( b ) | q ) d t ] 1 / q + [ 0 1 ( ( 2 t 2 ) α | f ( a ) | q + ( 1 ( 2 t 2 ) α ) | f ( b ) | q ) d t ] 1 / q } = | θ ( a , b ) | 8 ( q 1 2 q 1 ) 1 1 / q [ 1 ( α + 1 ) 2 α ] 1 / q { [ | f ( a ) | q + ( ( α + 1 ) 2 α 1 ) | f ( b ) | q ] 1 / q + [ ( 2 α + 1 1 ) | f ( a ) | q + ( 1 ( 1 α ) 2 α ) | f ( b ) | q ] 1 / q } .

The proof of Theorem 6 is complete. □

Corollary 2 Under the conditions of Theorem  6, if α=1, we have

| 1 2 [ f ( b ) + f ( b + θ ( a , b ) ) 2 + f ( 2 b + θ ( a , b ) 2 ) ] 1 θ ( a , b ) b b + θ ( a , b ) f ( x ) d x | | θ ( a , b ) | 8 ( q 1 2 q 1 ) 1 1 / q { [ | f ( a ) | q + 3 | f ( b ) | q 4 ] 1 / q + [ 3 | f ( a ) | q + | f ( b ) | q 4 ] 1 / q } .

Theorem 7 Let AR be an invex subset with respect to θ:A×AR and a,bA with θ(a,b)0. Suppose that f:AR is a differentiable function, f is integrable on the θ-path P b c : c=b+θ(a,b), and α(0,1]. If | f | q is α-preinvex on A for q>1 and qr>0, then

| 1 2 [ f ( b ) + f ( b + θ ( a , b ) ) 2 + f ( 2 b + θ ( a , b ) 2 ) ] 1 θ ( a , b ) b b + θ ( a , b ) f ( x ) d x | | θ ( a , b ) | 4 ( q 1 2 q r 1 ) 1 1 / q ( 1 2 ) ( q r ) / q × { [ ( 1 ( 2 r + 1 ) 2 2 r + 1 + 1 ( 2 α + 1 ) 2 2 α + 1 ) | f ( a ) | q + 3 ( r + 1 ) 2 r + 2 | f ( b ) | q ] 1 / q + [ ( 1 ( 2 r + 1 ) 2 2 r + 1 + 2 2 α + 1 1 ( 2 α + 1 ) 2 2 α + 1 ) | f ( a ) | q + 1 ( r + 1 ) 2 r + 2 | f ( b ) | q ] 1 / q } .
(12)

Proof Since b+tθ(a,b)A for every t[0,1], by Lemma 1, Hölder’s inequality, and the α-preinvexity of | f | q , we have

| 1 2 [ f ( b ) + f ( b + θ ( a , b ) ) 2 + f ( 2 b + θ ( a , b ) 2 ) ] 1 θ ( a , b ) b b + θ ( a , b ) f ( x ) d x | | θ ( a , b ) | 4 0 1 | 1 2 t | [ | f ( b + 1 t 2 θ ( a , b ) ) | + | f ( b + 2 t 2 θ ( a , b ) ) | ] d t | θ ( a , b ) | 4 ( 0 1 | 1 2 t | ( q r ) / ( q 1 ) d t ) 1 1 / q { [ 0 1 | 1 2 t | r | f ( b + 1 t 2 θ ( a , b ) ) | q d t ] 1 / q + [ 0 1 | 1 2 t | r | f ( b + 2 t 2 θ ( a , b ) ) | q d t ] 1 / q } | θ ( a , b ) | 4 ( q 1 2 q r 1 ) 1 1 / q ( 1 2 ) ( q r ) / q × { [ 0 1 | 1 2 t | r ( ( 1 t 2 ) α | f ( a ) | q + ( 1 ( 1 t 2 ) α ) | f ( b ) | q ) d t ] 1 / q + [ 0 1 | 1 2 t | r ( ( 2 t 2 ) α | f ( a ) | q + ( 1 ( 2 t 2 ) α ) | f ( b ) | q ) d t ] 1 / q } .
(13)

Since x r y α x 2 r + y 2 α 2 and z z α for x,y0 and 0z1, we obtain

0 1 | 1 2 t | r [ ( 1 t 2 ) α | f ( a ) | q + ( 1 ( 1 t 2 ) α ) | f ( b ) | q ] d t 0 1 [ 1 2 ( | 1 2 t | 2 r + ( 1 t 2 ) 2 α ) | f ( a ) | q + ( 1 + t 2 ) | 1 2 t | r | f ( b ) | q ] d t = [ 1 ( 2 r + 1 ) 2 2 r + 1 + 1 ( 2 α + 1 ) 2 2 α + 1 ] | f ( a ) | q + 3 ( r + 1 ) 2 r + 2 | f ( b ) | q
(14)

and

0 1 | 1 2 t | r [ ( 2 t 2 ) α | f ( a ) | q + ( 1 ( 2 t 2 ) α ) | f ( b ) | q ] d t 0 1 [ 1 2 ( | 1 2 t | 2 r + ( 2 t 2 ) 2 α ) | f ( a ) | q + t 2 | 1 2 t | r | f ( b ) | q ] d t = [ 1 ( 2 r + 1 ) 2 2 r + 1 + 2 2 α + 1 1 ( 2 α + 1 ) 2 2 α + 1 ] | f ( a ) | q + 1 ( r + 1 ) 2 r + 2 | f ( b ) | q .
(15)

Substituting (14) and (15) into (13) results in (12). The proof of Theorem 7 is complete. □

Corollary 3 Under the conditions of Theorem  7, if α=1, we have

| 1 2 [ f ( b ) + f ( b + θ ( a , b ) ) 2 + f ( 2 b + θ ( a , b ) 2 ) ] 1 θ ( a , b ) b b + θ ( a , b ) f ( x ) d x | | θ ( a , b ) | 4 ( q 1 2 q r 1 ) 1 1 / q ( 1 2 ) ( q r ) / q × { [ ( 1 ( 2 r + 1 ) 2 2 r + 1 + 1 24 ) | f ( a ) | q + 3 ( r + 1 ) 2 r + 2 | f ( b ) | q ] 1 / q + [ ( 1 ( 2 r + 1 ) 2 2 r + 1 + 7 24 ) | f ( a ) | q + | f ( b ) | q ( r + 1 ) 2 r + 2 ] 1 / q } .

Theorem 8 Let AR be an invex subset with respect to θ:A×AR and a,bA with θ(a,b)0. Suppose that f:AR is a differentiable function and f is integrable on the θ-path P b c : c=b+θ(a,b). If | f | q is preinvex on A for q>1 and qr>0, then

| 1 2 [ f ( b ) + f ( b + θ ( a , b ) ) 2 + f ( 2 b + θ ( a , b ) 2 ) ] 1 θ ( a , b ) b b + θ ( a , b ) f ( x ) d x | | θ ( a , b ) | 8 ( q 1 2 q r 1 ) 1 1 / q ( 1 r + 1 ) 1 / q × { [ | f ( a ) | q + 3 | f ( b ) | q 4 ] 1 / q + [ 3 | f ( a ) | q + | f ( b ) | q 4 ] 1 / q } .

Proof Since b+tθ(a,b)A for every t[0,1], by Lemma 1, Hölder’s inequality, and the preinvexity of | f | q , we have

| 1 2 [ f ( b ) + f ( b + θ ( a , b ) ) 2 + f ( 2 b + θ ( a , b ) 2 ) ] 1 θ ( a , b ) b b + θ ( a , b ) f ( x ) d x | | θ ( a , b ) | 4 0 1 | 1 2 t | [ | f ( b + 1 t 2 θ ( a , b ) ) | + | f ( b + 2 t 2 θ ( a , b ) ) | ] d t | θ ( a , b ) | 4 ( 0 1 | 1 2 t | ( q r ) / ( q 1 ) d t ) 1 1 / q × { [ 0 1 | 1 2 t | r | f ( b + 1 t 2 θ ( a , b ) ) | q d t ] 1 / q + [ 0 1 | 1 2 t | r | f ( b + 2 t 2 θ ( a , b ) ) | q d t ] 1 / q } | θ ( a , b ) | 4 ( q 1 2 q r 1 ) 1 1 / q ( 1 2 ) ( q r ) / q × { [ 0 1 | 1 2 t | r ( 1 t 2 | f ( a ) | q + 1 + t 2 | f ( b ) | q ) d t ] 1 / q + [ 0 1 | 1 2 t | r ( 2 t 2 | f ( a ) | q + t 2 | f ( b ) | q ) d t ] 1 / q } = | θ ( a , b ) | 4 ( q 1 2 q r 1 ) 1 1 / q ( 1 2 ) ( q r ) / q × { [ 1 ( r + 1 ) 2 r + 2 | f ( a ) | q + 3 ( r + 1 ) 2 r + 2 | f ( b ) | q ] 1 / q + [ 3 ( r + 1 ) 2 r + 2 | f ( a ) | q + 1 ( r + 1 ) 2 r + 2 | f ( b ) | q ] 1 / q } .

The proof of Theorem 8 is complete. □

Corollary 4 Under the conditions of Theorem  8, if r=q, we have

| 1 2 [ f ( b ) + f ( b + θ ( a , b ) ) 2 + f ( 2 b + θ ( a , b ) 2 ) ] 1 θ ( a , b ) b b + θ ( a , b ) f ( x ) d x | | θ ( a , b ) | 8 ( 1 q + 1 ) 1 / q { [ | f ( a ) | q + 3 | f ( b ) | q 4 ] 1 / q + [ 3 | f ( a ) | q + | f ( b ) | q 4 ] 1 / q } .

Theorem 9 Let AR be an invex subset with respect to θ:A×AR and a,bA with θ(a,b)0. Suppose that f:AR is a differentiable function, f is integrable on the θ-path P b c : c=b+θ(a,b), and α(0,1]. If f is α-preinvex on A, then

1 θ ( a , b ) b b + θ ( a , b ) f(x)dxmin { f ( a ) + α f ( b ) α + 1 , α f ( a ) + f ( b ) α + 1 } .
(16)

Proof Since b+tθ(a,b)A for 0t1, letting x=(1t)b+t(b+θ(a,b))=b+tθ(a,b) for 0t1 and using the α-preinvexity of f, we have

1 θ ( a , b ) b b + θ ( a , b ) f ( x ) d x = 0 1 f ( b + t θ ( a , b ) ) d t 0 1 [ t α f ( a ) + ( 1 t α ) f ( b ) ] d t = f ( a ) + α f ( b ) α + 1 .

The proof of Theorem 9 is complete. □

Corollary 5 Under the conditions of Theorem  9, if α=1, we have

1 θ ( a , b ) b b + θ ( a , b ) f(x)dx f ( a ) + f ( b ) 2 .