Introduction

The theory of time scales, which has recently received a lot of attention, was initiated by Hilger [1] in his Ph.D. thesis in 1988 to contain both difference and differential calculus in a consistent way. Since then many authors have investigated the dynamic equations, the calculus of variations and the optimal control problem on time scales (see [211]). At the same time, a few papers have studied the theory of integral inequalities on time scales (see [1214]).

In this article, we study some Gronwall-type integral inequalities on time scales, which extend some known dynamic inequalities on time scales, unify and extend some continuous inequalities and their corresponding discrete analogues. It is helpful in our result to study dynamic systems and optimal control problem on time scales.

Preliminaries

For convenience, we present some important theorem on time scales in this section. The approach is based on the ideas in [9] and will be of fundamental importance in following results.

A time scale T is a nonempty closed subset of R. The two most popular examples are T=R and T=Z. Define the forward and backward jump operators σ,ρ:TT by

σ ( t ) = inf { s T | s > t } , ρ ( t ) = sup { s T | s < t } , t T ,

where, in this definition, we write sup=infTa and inf=supTb. A point tT is said to be left-dense, left-scattered, right-dense, right-scattered if ρ(t) = t, ρ (t) < t, σ (t) = t, σ (t) > t, respectively. The forward (backward) graininess μ:T [ 0 , + ) ( ν : T [ 0 , + ) ) is defined by μ(t) = σ(t) - t(v(t) = t - ρ(t)). Define Λ= { t i T | i = 1 , 2 , , n } , P C l r d ( T , R ) ( P C r r d ( T , R ) ) = { x : T R | x is continuous at right-dense point tT\Λ, x exists right limit at t ∈ Λ or left-dense point tT, x is left (right) continuous and exists right (left) limit at t ∈ Λ}. Endowed with norm

| | x | | P C = max sup t T | | x ( t + ) | | , sup t T | | x ( t - ) | | .

P C l r d ( T , X ) , | | | | P C and P C r r d ( T , X ) , | | | | P C are Banach spaces.

Theorem 2.1. (1) Let f L 1 ( T , R ) . Then

F ( t ) = [ a , t ) f ( τ ) Δ τ , t T

implies F C r d ( T , R ) is Δ-differentiable Δ-a.e. on T and

F ( t ) - F ( s ) = [ s , t ) f ( τ ) Δ τ f o r s , t T .
  1. (2)

    If f and g are Δ-differentiable Δ-a.e. on T, then

    [ s , t ) f Δ ( τ ) g ( τ ) + f σ ( τ ) g Δ ( τ ) Δ τ = f ( t ) g ( t ) - f ( s ) g ( s ) f o r s , t T .

The exponential function e p on time scale plays a very important role for discussing dynamic equations on time scales. Define Γ 1 ( T ) = p L loc 1 ( T , R ) | 1 + μ ( t ) p ( t ) 0 . For any p,q Γ 1 ( T ) , define pq = p + q + μpq, p=- p 1 + μ p , pq= p - q 1 + μ q . Further, we can show that pq,pq,p Γ 1 ( T ) . Define the generalized exponential function as follows:

e p ( t , s ) = exp [ s , t ) ξ μ ( τ ) ( p ( τ ) ) Δ τ .

Theorem 2.2. Assume that p,q Γ 1 ( T ) , then the following hold:

  1. (1)

    e 0(t, s) ≡ 1, e p (t, t) ≡ 1, e p (t, s)e p (s, r) = e p (t, r), e p (σ(t), s) = [1 + μ(t)p(t)]e p (t, s);

  2. (2)

    e p ( t , s ) = 1 e p ( s , t ) = e p ( s , t ) , e p (t, s)e q (t, s) = e pq (t, s), e p ( t , s ) e q ( t , s ) = e p q ( t , s ) ;

  3. (3)

    e p ( , s ) C r d ( T , R ) , (e p (·, s))Δ = p(·)e p (·, s),e p (s, ·))Δ = -p(·)e p (s, σ(·) Δ-a.e. on T.

Main results

In this section, we deal with Gronwall-type integral inequalities with impulses on time scales. For convenience, we always assume that f L 1 T , R , p i , q i L 1 T , R + with R + = [0, +∞), 0 < λ i < 1 (i = 1, 2, 3, 4), α ≥ 0, β k ≥ 0 (k = 1, 2, · · ·, n), x t = sup a s t |x ( s ) |, x τ b sup τ s b |x ( s ) | in the section.

Theorem A. (1) If x C r d T , R satisfies the following inequality

x Δ ( t ) p 1 ( t ) x ( t ) + f ( t ) Δ - a . e . o n T

then

x ( t ) e p 1 ( t , a ) x ( a ) + [ a , t ) e p 1 ( t , σ ( τ ) ) f ( τ ) Δ τ f o r a l l t T .
  1. (2)

    If xP C l r d T , R + satisfies the following inequality

    x ( t ) α + [ a , t ) p 1 ( τ ) x ( τ ) Δ τ + t k < t β k x t k , t T ,

then

x t α t k < t ( 1 + β k ) e p 1 ( t , a ) , t T .
  1. (3)

    If xP C l r d T , R + satisfies the following inequality

    x ( t ) α + [ a , t ) p 1 ( τ ) x ( τ ) Δ τ + [ a , t ) q 1 ( τ ) x λ 1 ( σ ( τ ) ) Δ τ + t k < t β k x ( t k ) , t T ,

then there is a constant M > 0 such that

x ( t ) M , t T .
  1. (4)

    If xP C l r d T , R + satisfies the following inequality

    x ( t ) α + [ a , t ) p 1 ( τ ) x ( τ ) Δ τ + [ a , t ) p 2 ( τ ) x τ Δ τ + [ a , t ) q 1 ( τ ) x λ 1 ( σ ( τ ) ) Δ τ (1) + [ a , t ) q 2 ( τ ) x σ ( τ ) λ 2 Δ τ + t k < t β k x t k , t T , (2) (3)

then there is a constant M > 0 such that

x ( t ) M , t T .
  1. (5)

    If xP C l r d T , R + satisfies the following inequality

    x ( t ) [ a , t ) p 1 ( τ ) x ( τ ) Δ τ + [ a , t ) p 2 ( τ ) x τ Δ τ + [ a , t ) q 1 ( τ ) x λ 1 ( σ ( τ ) ) Δ τ + [ a , t ) q 2 ( τ ) x σ ( τ ) λ 2 Δ τ (1) + α + [ a , b ) q 3 ( τ ) x λ 3 ( τ ) Δ τ + [ a , b ) q 4 ( τ ) x σ ( τ ) λ 4 Δ τ + t k < t β k x t k , t T , (2) (3) 

then there is a constant M > 0 such that

x ( t ) M , t T .

Proof. (1) Note that p 1 L 1 ( T , R + ) implies p 1 Γ 1 ( T ) and 1 + μ(t)p 1(t) > 0 for all tT. Now

[ x ( t ) e p 1 ( t , a ) ] Δ = x Δ ( t ) - p 1 ( t ) x ( t ) e p 1 ( σ ( t ) , a ) Δ - a .e . on T .

Therefore,

x ( t ) e p 1 ( t , a ) - x ( a ) = [ a , t ) x Δ ( τ ) - p 1 ( τ ) x ( τ ) e p 1 ( σ ( τ ) , a ) Δ τ [ a , t ) f ( τ ) e p 1 ( σ ( τ ) , a ) Δ τ ,

that is,

x ( t ) e p 1 ( t , a ) x ( a ) + [ a , t ) e p 1 ( t , σ ( τ ) ) f ( τ ) Δ τ for all t T .
  1. (2)

    Define

    y ( t ) = α + [ a , t ) p 1 ( τ ) x ( τ ) Δ τ + t k < t β k x ( t k ) , t T .

By Theorem 2.1, y is Δ-differential Δ-a.e. on T and

y Δ ( t ) = p 1 ( t ) x ( t ) p 1 ( t ) y ( t ) , t t k , y ( a ) = α , y ( t k + ) = ( 1 + β k ) y ( t k ) .

For t ∈ [a, t 1], it is obvious to

y ( t ) α e p 1 ( t , a ) .

Further, we have

y ( t ) y ( t i + ) e p 1 ( t , t i ) α ( 1 + β i ) t k < t i ( 1 + β k ) e p 1 ( t i , a ) e p 1 ( t , t i ) = α t k < t ( 1 + β k ) e p 1 ( t , a ) , t ( t i , t i + 1 ] .

Thus,

x ( t ) α t k < t 1 + β k e p ( t , a ) , t T .
  1. (3)

    Setting

    y ( t ) = α + [ a , t ) p 1 ( τ ) x ( τ ) Δ τ + [ a , t ) g 1 ( τ ) x λ 1 ( σ ( τ ) ) Δ τ + t k < t β k x ( t k ) ,

then

y Δ ( t ) = p 1 ( t ) x ( t ) + g 1 ( t ) x λ 1 ( σ ( t ) ) p 1 ( t ) y ( t ) + g 1 ( t ) y λ 1 ( σ ( t ) ) Δ - a .e . on T , t t k , y ( a ) = α , y t k + = y t k + β k x ( t k ) = ( 1 + β k ) y ( t k ) .

Using the conclusion (1), we have

y ( t ) α t k < t ( 1 + β k ) e p 1 ( t , a ) + t k < t ( 2 + β k ) [ a , t ) e p 1 ( t , σ ( τ ) ) g 1 ( τ ) y λ 1 ( σ ( τ ) ) Δ τ (1) t k < t ( 2 + β k ) α e p 1 ( t , a ) + [ a , t ) e p 1 ( t , σ ( τ ) ) g 1 ( τ ) y λ 1 ( σ ( τ ) ) Δ τ . (2) (3) 

For tT, let

h ( t ) = α e p 1 ( b , a ) + e p 1 ( b , a ) [ a , t ) g 1 ( τ ) y λ 1 ( σ ( τ ) ) Δ τ + e p 1 ( b , a ) [ a , b ) g 1 ( τ ) y λ 1 ( σ ( τ ) ) Δ τ ,

then h is monotone increasing function and h ( b ) =2h ( a ) -α e p 1 ( b , a ) ,

h Δ ( t ) = e p 1 ( b , a ) g 1 ( t ) y λ 1 ( σ ( t ) ) k = 1 n ( 2 + β k ) λ 1 e p 1 ( b , a ) g 1 ( t ) q λ 1 ( t ) , t T .

Δ-integrating from a to t, we obtain

h 1 - λ 1 ( t ) - h 1 - λ 1 ( a ) ρ [ a , t ) g 1 ( τ ) Δ τ , t T ,

where

ρ = ( 1 - λ 1 ) e p 1 ( b , a ) k = 1 n ( 2 + β k ) λ 1 .

Now, we observe that

2 h ( a ) - α e p 1 ( b , a ) 1 - λ 1 - h 1 - λ 1 ( a ) ρ [ a , b ) g 1 ( τ ) Δ τ .

Letting

Γ ( z ) = 2 z - α e p 1 ( b , a ) 1 - λ 1 - z 1 - λ 1 ,

then ΓC α e p 1 ( b , a ) 2 , + , R and Γ α e p 1 ( b , a ) 2 =- α e p 1 ( b , a ) 2 1 - λ 1 <0,

lim z + Γ ( z ) = lim z + Γ ( z ) z 1 - λ 1 z 1 - λ 1 = lim z + 2 - α e p 1 ( b , a ) z 1 - λ 1 - 1 z 1 - λ 1 = + .

Using the proof by contraction, one can show that there exists a constant M > 0 such that q(a) < M. Thus,

x ( t ) y ( t ) h ( a ) M , t T .
  1. (4)

    Setting λ = max{λ 1, λ 2},

    z ( t ) = 1 , x ( t ) < 1 , x ( t ) , x ( t ) 1 , p ( t ) = p 1 ( t ) + p 2 ( t ) , g ( t ) = g 1 ( t ) + g 2 ( t ) , t T ,

we have

x ( t ) α + [ a , t ) p ( τ ) z τ Δ τ + [ a , t ) g ( τ ) z σ ( τ ) λ Δ τ + t k < t β k z t k , t T .

Furthermore,

z t α + [ a , t ) p ( τ ) z τ Δ τ + [ a , t ) g ( τ ) z σ ( τ ) λ Δ τ + t k < t β k z t k , t T ,

By the conclusion (3), there is a constant M > 0 such that

x ( t ) M , t T .
  1. (5)

    Setting λ = max{λ 1, λ 2, λ 3, λ 4},

    y ( t ) = 1 , x t < 1 , x t , x t 1 , p ( t ) = p 1 ( t ) + p 2 ( t ) , g ( t ) = i = 1 4 g i ( t ) , t T .

we have

y ( t ) α + [ a , t ) p ( τ ) y ( τ ) Δ τ + [ a , b ) g ( τ ) y λ ( τ ) Δ τ + t k < t β k y ( t k ) .

By the conclusions (3) and (4), we can show that the conclusion (5) is true. The proof is completed. □

In Theorem A, we give some Gronwall-type generalized integral inequalities on time scales. Next, we give some backward Gronwall-type generalized integral inequalities on time scales which can not be directly obtained from Gronwall inequalities.

Theorem B. (1) If x C r d ( T , R + ) satisfies the following inequality

x ( t ) f ( t ) + [ t , b ) p 1 ( τ ) x σ ( τ ) Δ τ ,

then

x ( t ) f ( t ) + [ t , b ) e p 1 ( τ , t ) p 1 ( τ ) f σ ( τ ) Δ τ f o r t T .
  1. (2)

    If xP C r r d ( T , R + ) satisfies the following inequality

    x ( t ) α + [ t , b ) p 1 ( τ ) x σ ( τ ) Δ τ + t k > t β k x ( t k )

then

x ( t ) α t k > t ( 1 + β k ) e p 1 ( b , t ) , t T .

(3) If xP C r r d ( T , R + ) satisfies the following inequality

x ( t ) α + [ t , b ) p 1 ( τ ) x λ 1 ( τ ) Δ τ + [ t , b ) g 1 ( τ ) x σ ( τ ) Δ τ ,

then there is a constant M > 0 such that

x ( t ) M , t T .

(4) If xP C r r d ( T , R + ) satisfies the following inequality

x ( t ) α + [ t , b ) p 1 ( τ ) x λ 1 ( τ ) Δ τ + [ t , b ) p 2 ( τ ) x τ b λ 2 Δ τ + [ t , b ) g 1 ( τ ) x ( σ ( τ ) ) Δ τ (1) + [ t , b ) g 2 ( τ ) x σ ( τ ) b Δ τ + t k > t β k x ( t k ) , t T , (2) (3)

then there is a constant M > 0 such that

x ( t ) M , t T .

(5) If xP C r r d ( T , R + ) satisfies the following inequality

x ( t ) [ t , b ) p 1 ( τ ) x λ 1 ( τ ) Δ τ + [ t , b ) p 2 ( τ ) x τ b λ 2 Δ τ + [ t , b ) g 1 ( τ ) x σ ( τ ) Δ τ + [ t , b ) g 2 ( τ ) x σ ( τ ) b Δ τ (1) + α + [ a , b ) g 3 ( τ ) x λ 3 ( τ ) Δ τ + [ a , b ) g 4 ( τ ) x σ ( τ ) b λ 4 Δ τ + t k > t β k x ( t k ) , (2) (3) 

then there is a constant M > 0 such that

x ( t ) M , t T .

Proof. (1) Define

y ( t ) = [ t , b ) p 1 ( τ ) x σ ( τ ) Δ τ for t T .

Then y(b) = 0 and

y Δ ( t ) = - p 1 ( t ) x σ ( t ) - p 1 ( t ) y σ ( t ) - p 1 ( t ) f σ ( t ) Δ - a .e . on T .

Note that,

[ y ( t ) e p 1 ( t , b ) ] Δ = y Δ ( t ) + p 1 ( t ) y σ ( t ) e p 1 ( t , b ) Δ - a .e . on T ,

therefore,

- y ( t ) e p 1 ( t , b ) - [ t , b ) p 1 ( τ ) f σ ( τ ) e p 1 ( τ , b ) Δ τ .

Moreover, we obtain

x ( t ) f ( t ) + [ t , b ) e p 1 ( τ , t ) p 1 ( τ ) f σ ( τ ) Δ τ for t T .
  1. (2)

    Setting

    y ( t ) = α + [ t , b ) p 1 ( τ ) x σ ( τ ) Δ τ + t k > t β k x ( t k ) , t T .

then y is Δ-differential Δ-a.e. on T and

y Δ ( t ) = - p 1 ( t ) x σ ( t ) - p 1 ( t ) y σ ( t ) , t t k , y t k - = y t k + β k x ( t k ) ( 1 + β k ) y ( t k ) , y ( b ) = α .

For t ∈ [t n , b], by the conclusion (1) we have

y ( t ) α e p 1 ( b , t ) .

When t ∈ (t n , t n+1], By Theorem 2.2 and the conclusion (1) we also obtain

y ( t ) y ( t n - ) e p 1 ( t n , t ) α ( 1 + β n ) e p 1 ( b , t ) .

Thus,

x ( t ) α t k > t ( 1 + β k ) e p 1 ( b , t ) , t T .
  1. (3)

    Setting γ = (α + 1)(β + 1), β = ∫[a,b) e g (τ, a)g(τ)Δτ, then

    x ( t ) α + [ t , b ) p 1 ( τ ) x λ 1 ( τ ) Δ τ + α [ t , b ) e g 1 ( τ , t ) g 1 ( τ ) Δ τ + [ t , b ) e g 1 ( τ , t ) g 1 ( τ ) [ τ , b ) p 1 ( ν ) x λ 1 ( ν ) Δ ν Δ τ (1) γ + γ [ a , b ) p 1 ( τ ) x λ 1 ( τ ) Δ τ . (2) (3) 

Letting

h ( t ) = γ + γ [ t , b ) p 1 ( τ ) x λ ( τ ) Δ τ + γ [ a , b ) p 1 ( τ ) x λ 1 ( τ ) Δ τ ,

then h is monotone descending function and

h Δ ( t ) - γ p 1 ( t ) h λ ( t ) .

Δ-integrating from t to b, we obtain

h 1 - λ 1 ( t ) - h 1 - λ 1 ( b ) ( 1 - λ 1 ) γ [ t , b ) p 1 ( τ ) Δ τ .

Therefore,

2 h ( b ) - γ 1 - λ 1 - h 1 - λ 1 ( b ) ( 1 - λ 1 ) γ [ a , b ) p 1 ( τ ) Δ τ .

Using the method of the conclusion (3) in Theorem A, one can show that there is a constant M > 0 such that

x ( t ) M , t T .
  1. (4)

    For tT, define

    z ( t ) = 1 , x ( t ) < 1 , x ( t ) , x ( t ) 1 ,

we have

x ( t ) α + [ t , b ) p ( τ ) z τ b Δ τ + [ t , b ) g ( τ ) z σ ( τ ) b λ Δ τ + t k > t β k z t k b , t T ,

where λ = max{λ 1, λ 2}, p(t) = p 1(t) + p 2(t)g(t) = g 1(t) + g 2(t). Hence

z t b α + [ t , b ) p ( τ ) z τ b Δ τ + [ t , b ) g ( τ ) z σ ( τ ) b λ Δ τ + t k > t β k z t k b , t T ,

By the conclusion (3), there exists a constant M > 0 such that

x ( t ) M , t T .
  1. (5)

    Setting λ = max{λ 1, λ 2, λ 3, λ 4},

    y ( t ) = 1 , x t < 1 , x t , x t 1 , p ( t ) = p 1 ( t ) + p 2 ( t ) , g ( t ) = i = 1 4 g i ( t ) , t T .

then we have

y ( t ) α + [ t , b ) p ( τ ) y ( τ ) Δ τ + [ a , b ) g ( τ ) y λ ( τ ) Δ τ + t k > t β k y ( t k ) .

Further, we also can prove that the conclusion (5) is hold. This completes the proof.

Remark 3.1: (1) If T=R, then the inequality established in Theorem A reduces to the inequality established by Peng and Wei in [15].

  1. (2)

    Using our main results, we can obtain many dynamic inequalities for some peculiar time scales. Due to limited space, their statements are omitted here.

Application

In this section, we present some applications of Theorems A and B to investigate certain properties of solutions of the following impulsive dynamic integral equation

x Δ ( t ) + p ( t ) x σ ( t ) = f t , x ( t ) , x σ ( t ) , ( S x ) ( t ) , ( W x ) ( t ) , t Λ , ( S x ) ( t ) = [ a , t ) k ( t , τ ) s τ , x ( τ ) , x σ ( τ ) Δ τ , t T , ( W x ) ( t ) = [ a , b ) m ( t , τ ) w τ , x ( τ ) , x σ ( τ ) Δ τ , t T x t k + = x t k + J k x t k , t k Λ , x ( a ) = x 0 ,
(4.1)

where p Γ 1 ( T ) .

Definition 4.1: A function xP C l r d ( T , R ) is said to be a weak solution of (4.1), if x satisfies the impulsive integral equation

x ( t ) = e p ( t , a ) x 0 + [ a , t ) e p ( t , τ ) f ( τ , x ( τ ) , x σ ( τ ) , ( S x ) ( τ ) , ( W x ) ( τ ) ) Δ τ + t k < t e p ( t , t k ) J k ( x ( t k ) ) , t T .

Suppose that:

[F] (1) k, m C r d ( T × T , R ) , the functions f:T×R×R×R×RR, s:T×R×RR, w:T×R×RR are measurable in tT and locally Lipschitz continuous, that is, for any ρ > 0, there exists a constant L(ρ) > 0, for all x i , y i , z i , w i X, satisfying ||x i ||, ||y i ||, ||z i ||, ||w i || ≤ ρ (i = 1, 2), we have

f ( t , x 1 , y 1 , z 1 , w 1 ) - f ( t , x 2 , y 2 , z 2 , w 2 ) L ( ρ ) ( x 1 - x 2 + y 1 - y 2 + z 1 - z 2 + w 1 - w 2 ) , (1) s ( t , x 1 , y 1 ) - s ( t , x 2 , y 2 ) L ( ρ ) x 1 - x 2 + y 1 - y 2 , (2) w ( t , x 1 , y 1 ) - w ( t , x 2 , y 2 ) L ( ρ ) x 1 - x 2 + y 1 - y 2 . (3) (4) 
  1. (2)

    There are constants 0 < λ i < 0 (i = 1, · · ·, 4) and function q 1, q 2, q 3 L 1 T , R + such that

    | f ( t , x , y , w , z ) | q 1 ( t ) 1 + | x | + | y | λ 1 + | w | + | z | , x , y , w , z R , t T , (1)  | s ( t , x , y ) | q 2 ( t ) 1 + | x | + | y | λ 2 , x , y R , t T , (2)  | w ( t , x , y ) | q 3 ( t ) 1 + | x | λ 3 + | y | λ 4 , x , y R , t T . (3)  (4) 
  2. (3)

    There are constants β k ≥ 0 such that the mapping J k : RR (k = 12 · · · n) satisfies

    J k ( x ) - J k ( y ) β k x - y , x , y X .

Theorem C. Under assumption [F], if p Γ 1 ( T ) , then the system (4.1) has a weak solution xP C l r d ( T , R ) .

Proof. Define the operator H on P C l r d ( T , R ) given by

( H x ) ( t ) = [ a , t ) e p ( t , τ ) f ( τ , x ( τ ) , x σ ( τ ) , ( S x ) ( τ ) , ( W x ) ( τ ) ) Δ τ + e p ( t , a ) x 0 + t k < t e p ( t , t k ) J k ( x ( t k ) ) .

We can first prove that H:P C l r d ( T , R ) P C l r d ( T , R ) is continuous and compact.

Let xϒ x P C l r d ( T , R ) | x = δ ( H x ) , δ [ 0 , 1 ] . When δ ≠ 0, set y= 1 δ x, if not y = 0. Note that

| y ( t ) | M | x 0 | + q 1 L 1 ( 1 + k q 2 L 1 + m q 3 L 1 ) + k = 1 n | J k ( 0 ) | (1) + M δ [ a , t ) q 1 ( τ ) | y ( τ ) | Δ τ + M δ k q 2 L 1 [ a , t ) q 1 ( τ ) | y τ | Δ τ (2) + M δ [ a , t ) q 1 ( τ ) | y σ ( τ ) | λ 1 Δ τ + M δ k q 2 L 1 [ a , t ) q 1 ( τ ) | y σ ( τ ) | λ 2 Δ τ , (3) + M δ m q 1 L 1 [ a , b ) q 3 ( τ ) | y ( τ ) | λ 3 Δ τ (4) + M δ m q 1 L 1 [ a , b ) q 3 ( τ ) | y σ ( τ ) | λ 4 Δ τ + M t k < t β k | y ( t k ) | . (5) (6) 

By Gronwall inequality (5) in Theorem A, there is a constant M > 0 such that

| y ( t ) | M , t T .

It follows by Leray-Schauder fixed point theorem, H has a fixed point in P C r d ( T , R ) , that is, the impulsive integro-differential equation (4.1) has a weak solution xP C r d ( T , R ) . □

For the following backward problem

φ Δ ( t ) + p ( t ) φ σ ( t ) = w ( t , φ ( t ) , φ σ ( t ) ) , a t < b , φ ( b ) = φ 1 ,
(4.2)

we introduce the following assumption:

[W] (1) The function w:T×R×RR is Δ-measurable in tT and locally Lipschitz continuous, i.e. for all φ 1, φ 2, ψ 1, ψ 2R, satisfying |φ 1|, |φ 2|, |ψ 1|, |ψ 2| ≤ ρ, we have

| w ( t , φ 1 , ψ 1 ) - w ( t , φ 2 , ψ 2 ) | L ( ρ ) ( | φ 1 - φ 2 | + | ψ 1 - ψ 2 | ) for all t T .
  1. (2)

    There exist a constant 0 < λ < 1 and a function q L 1 ( T , [ 0 , + ) ) such that

    | w ( t , φ , ψ ) | q ( t ) ( 1 + | φ | λ + | ψ | ) for all φ , ψ R .

We can prove the following result.

Theorem D. Let p Γ 1 ( T ) . Under the assumption [W], the backward problem of the nonlinear dynamical equation (4.2) has a unique weak solution φ C r d ( T , R ) .