1 Introduction

In this paper, we consider the polynomials T n ( r , k ) (x| a 1 ,, a r ; λ 1 ,, λ r ) whose generating function is given by

j = 1 r ( 1 λ j e a j t λ j ) Li k ( 1 e t ) 1 e t e x t = n = 0 T n ( r , k ) (x| a 1 ,, a r ; λ 1 ,, λ r ) t n n ! ,
(1)

where r Z > , kZ, a 1 ,, a r 0, λ 1 ,, λ r 1 and

Li k (x)= m = 1 x m m k

is the k th polylogarithm function. T n ( r , k ) (x| a 1 ,, a r ; λ 1 ,, λ r ) will be called Barnes’ multiple Frobenius-Euler and poly-Bernoulli mixed-type polynomials. When x=0, T n ( r , k ) ( a 1 ,, a r ; λ 1 ,, λ r )= T n ( r , k ) (0| a 1 ,, a r ; λ 1 ,, λ r ) will be called Barnes’ multiple Frobenius-Euler and poly-Bernoulli mixed-type numbers.

Recall that, for every integer k, the poly-Bernoulli polynomials B n ( k ) (x) are defined by the generating function as follows:

Li k ( 1 e t ) 1 e t e x t = n = 0 B n ( k ) (x) t n n !
(2)

([1], cf. [2]). Also, as a natural generalization of higher-order Frobenius-Euler polynomials, Barnes’ multiple Frobenius-Euler polynomials H n ( r ) (x| a 1 ,, a r ; λ 1 ,, λ r ) are defined by the generating function as follows:

j = 1 r ( 1 λ j e a j t λ j ) e x t = n = 0 H n ( r ) (x| a 1 ,, a r ; λ 1 ,, λ r ) t n n ! ,
(3)

where a 1 ,, a r 0. Note that the Frobenius-Euler polynomials of order r, H n ( r ) (x|λ) are defined by the generating function

( 1 λ e t λ ) r e x t = n = 0 H n ( r ) (x|λ) t n n !

(see, e.g., [3]).

In this paper, we consider Barnes’ multiple Frobenius-Euler and poly-Bernoulli mixed-type polynomials. From the properties of Sheffer sequences of these polynomials arising from umbral calculus, we derive new and interesting identities.

2 Umbral calculus

Let ℂ be the complex number field and let ℱ be the set of all formal power series in the variable t:

F= { f ( t ) = k = 0 a k k ! t k | a k C } .
(4)

Let P=C[x] and let P be the vector space of all linear functionals on ℙ. L|p(x) is the action of the linear functional L on the polynomial p(x), and we recall that the vector space operations on P are defined by L+M|p(x)=L|p(x)+M|p(x), cL|p(x)=cL|p(x), where c is a complex constant in ℂ. For f(t)F, let us define the linear functional on ℙ by setting

f ( t ) | x n = a n (n0).
(5)

In particular,

t k | x n =n! δ n , k (n,k0),
(6)

where δ n , k is the Kronecker symbol.

For f L (t)= k = 0 L | x k k ! t k , we have f L (t)| x n =L| x n . That is, L= f L (t). The map L f L (t) is a vector space isomorphism from P onto ℱ. Henceforth, ℱ denotes both the algebra of formal power series in t and the vector space of all linear functionals on ℙ, and so an element f(t) of ℱ will be thought of as both a formal power series and a linear functional. We call ℱ the umbral algebra and the umbral calculus is the study of umbral algebra. The order O(f(t)) of a power series f(t) (≠0) is the smallest integer k for which the coefficient of t k does not vanish. If O(f(t))=1, then f(t) is called a delta series; if O(f(t))=0, then f(t) is called an invertible series. For f(t),g(t)F with O(f(t))=1 and O(g(t))=0, there exists a unique sequence s n (x) (deg s n (x)=n) such that g(t)f ( t ) k | s n (x)=n! δ n , k for n,k0. Such a sequence s n (x) is called the Sheffer sequence for (g(t),f(t)) which is denoted by s n (x)(g(t),f(t)).

For f(t),g(t)F and p(x)P, we have

f ( t ) g ( t ) | p ( x ) = f ( t ) | g ( t ) p ( x ) = g ( t ) | f ( t ) p ( x )
(7)

and

f(t)= k = 0 f ( t ) | x k t k k ! ,p(x)= k = 0 t k | p ( x ) x k k !
(8)

[[4], Theorem 2.2.5]. Thus, by (8), we get

t k p(x)= p ( k ) (x)= d k p ( x ) d x k and e y t p(x)=p(x+y).
(9)

Sheffer sequences are characterized in the generating function [[4], Theorem 2.3.4].

Lemma 1 The sequence s n (x) is Sheffer for (g(t),f(t)) if and only if

1 g ( f ¯ ( t ) ) e y f ¯ ( t ) = k = 0 s k ( y ) k ! t k (yC),

where f ¯ (t) is the compositional inverse of f(t).

For s n (x)(g(t),f(t)), we have the following equations [[4], Theorem 2.3.7, Theorem 2.3.5, Theorem 2.3.9]:

f(t) s n (x)=n s n 1 (x)(n0),
(10)
s n (x)= j = 0 n 1 j ! g ( f ¯ ( t ) ) 1 f ¯ ( t ) j | x n x j ,
(11)
s n (x+y)= j = 0 n ( n j ) s j (x) p n j (y),
(12)

where p n (x)=g(t) s n (x).

Assume that p n (x)(1,f(t)) and q n (x)(1,g(t)). Then the transfer formula [[4], Corollary 3.8.2] is given by

q n (x)=x ( f ( t ) g ( t ) ) n x 1 p n (x)(n1).

For s n (x)(g(t),f(t)) and r n (x)(h(t),l(t)), assume that

s n (x)= m = 0 n C n , m r m (x)(n0).

Then we have [[4], p.132]

C n , m = 1 m ! h ( f ¯ ( t ) ) g ( f ¯ ( t ) ) l ( f ¯ ( t ) ) m | x n .
(13)

3 Main results

We now note that B n ( k ) (x), H n ( r ) (x| a 1 ,, a r ; λ 1 ,, λ r ) and T n ( r , k ) (x| a 1 ,, a r ; λ 1 ,, λ r ) are the Appell sequences for

g k ( t ) = 1 e t Li k ( 1 e t ) , g r ( t ) = j = 1 r ( e a j t λ j 1 λ j ) , g r , k ( t ) = j = 1 r ( e a j t λ j 1 λ j ) 1 e t Li k ( 1 e t ) .

So,

B n ( k ) (x) ( 1 e t Li k ( 1 e t ) , t ) ,
(14)
H n ( r ) (x| a 1 ,, a r ; λ 1 ,, λ r ) ( j = 1 r ( e a j t λ j 1 λ j ) , t ) ,
(15)
T n ( r , k ) (x| a 1 ,, a r ; λ 1 ,, λ r ) ( j = 1 r ( e a j t λ j 1 λ j ) 1 e t Li k ( 1 e t ) , t ) .
(16)

In particular, we have

t B n ( k ) (x)= d d x B n ( k ) (x)=n B n 1 ( k ) (x),
(17)
t H n ( r ) ( x | a 1 , , a r ; λ 1 , , λ r ) = d d x H n ( r ) ( x | a 1 , , a r ; λ 1 , , λ r ) = n H n 1 ( r ) ( x | a 1 , , a r ; λ 1 , , λ r ) ,
(18)
t T n ( r , k ) ( x | a 1 , , a r ; λ 1 , , λ r ) = d d x T n ( r , k ) ( x | a 1 , , a r ; λ 1 , , λ r ) = n T n 1 ( r , k ) ( x | a 1 , , a r ; λ 1 , , λ r ) .
(19)

Notice that

d d x Li k (x)= 1 x Li k 1 (x).

3.1 Explicit expressions

Write H n ( r ) ( a 1 ,, a r ; λ 1 ,, λ r ):= H n ( r ) (0| a 1 ,, a r ; λ 1 ,, λ r ). Let ( n ) j =n(n1)(nj+1) (j1) with ( n ) 0 =1.

Theorem 1

T n ( r , k ) ( x | a 1 , , a r ; λ 1 , , λ r ) = l = 0 n ( n l ) B l ( k ) ( x ) H n l ( r ) ( a 1 , , a r ; λ 1 , , λ r )
(20)
= l = 0 n ( n l ) B n l ( k ) H l ( r ) (x| a 1 ,, a r ; λ 1 ,, λ r )
(21)
= l = 0 n m = 0 n j = 0 m ( 1 ) j ( m j ) ( n l ) 1 ( m + 1 ) k H n l ( r ) ( a 1 ,, a r ; λ 1 ,, λ r ) ( x j ) l
(22)
= l = 0 n ( j = l n m = 0 n j ( 1 ) n m j ( n j ) ( j l ) × m ! ( m + 1 ) k S 2 ( n j , m ) H j l ( r ) ( a 1 , , a r ; λ 1 , , λ r ) ) x l
(23)
= j = 0 n ( n j ) T n j ( r , k ) ( a 1 ,, a r ; λ 1 ,, λ r ) x j .
(24)

Proof By (1), (2) and (3), we have

T n ( r , k ) ( y | a 1 , , a r ; λ 1 , , λ r ) = i = 0 T i ( r , k ) ( y | a 1 , , a r , λ 1 , , λ r ) t i i ! | x n = j = 1 r ( 1 λ j e a j t λ j ) Li k ( 1 e t ) 1 e t e y t | x n = j = 1 r ( 1 λ j e a j t λ j ) | Li k ( 1 e t ) 1 e t e y t x n = j = 1 r ( 1 λ j e a j t λ j ) | l = 0 B l ( k ) ( y ) t l l ! x n = l = 0 n ( n l ) B l ( k ) ( y ) j = 1 r ( 1 λ j e a j t λ j ) | x n l = l = 0 n ( n l ) B l ( k ) ( y ) i = 0 H i ( r ) ( a 1 , , a r ; λ 1 , , λ r ) t i i ! | x n l = l = 0 n ( n l ) B l ( k ) ( y ) H n l ( r ) ( a 1 , , a r ; λ 1 , , λ r ) .

So, we get (20).

We also have

T n ( r , k ) ( y | a 1 , , a r ; λ 1 , , λ r ) = i = 0 T i ( r , k ) ( y | a 1 , , a r ; λ 1 , , λ r ) t i i ! | x n = j = 1 r ( 1 λ j e a j t λ j ) Li k ( 1 e t ) 1 e t e y t | x n = Li k ( 1 e t ) 1 e t | j = 1 r ( 1 λ j e a j t λ j ) e y t x n = Li k ( 1 e t ) 1 e t | l = 0 H l ( r ) ( y | a 1 , , a r ; λ 1 , , λ r ) t l l ! x n = l = 0 n ( n l ) H l ( r ) ( y | a 1 , , a r ; λ 1 , , λ r ) Li k ( 1 e t ) 1 e t | x n l = l = 0 n ( n l ) H l ( r ) ( y | a 1 , , a r ; λ 1 , , λ r ) i = 0 B i ( k ) t i i ! | x n l = l = 0 n ( n l ) H l ( r ) ( y | a 1 , , a r ; λ 1 , , λ r ) B n l ( k ) .

Thus, we get (21).

In [5] we obtained that

Li k ( 1 e t ) 1 e t x n = m = 0 n 1 ( m + 1 ) k j = 0 m ( 1 ) j ( m j ) ( x j ) n .

So,

T n ( r , k ) ( x | a 1 , , a r ; λ 1 , , λ r ) = j = 1 r ( 1 λ j e a j t λ j ) Li k ( 1 e t ) 1 e t x n = m = 0 n 1 ( m + 1 ) k j = 0 m ( 1 ) j ( m j ) j = 1 r ( 1 λ j e a j t λ j ) ( x j ) n = m = 0 n 1 ( m + 1 ) k j = 0 m ( 1 ) j ( m j ) l = 0 n ( n l ) H n l ( r ) ( a 1 , , a r ; λ 1 , , λ r ) ( x j ) l = l = 0 n m = 0 n j = 0 m ( 1 ) j ( m j ) ( n l ) 1 ( m + 1 ) k H n l ( r ) ( a 1 , , a r ; λ 1 , , λ r ) ( x j ) l ,

which is identity (22).

In [5] we obtained that

Li k ( 1 e t ) 1 e t x n = j = 0 n ( m = 0 n j ( 1 ) n m j ( m + 1 ) k ( n j ) m ! S 2 ( n j , m ) ) x j ,

where S 2 (l,m) are the Stirling numbers of the second kind, defined by

( e t 1 ) m =m! l = m S 2 (l,m) t l l ! .

Thus,

T n ( r , k ) ( x | a 1 , , a r ; λ 1 , , λ r ) = j = 0 n ( m = 0 n j ( 1 ) n m j ( m + 1 ) k ( n j ) m ! S 2 ( n j , m ) ) j = 1 r ( 1 λ j e a j t λ j ) x j = j = 0 n ( m = 0 n j ( 1 ) n m j ( m + 1 ) k ( n j ) m ! S 2 ( n j , m ) ) H j ( r ) ( x | a 1 , , a r ; λ 1 , , λ r ) = j = 0 n ( m = 0 n j ( 1 ) n m j ( m + 1 ) k ( n j ) m ! S 2 ( n j , m ) ) l = 0 j ( j l ) H j l ( r ) ( a 1 , , a r ; λ 1 , , λ r ) x l = l = 0 n ( j = l n m = 0 n j ( 1 ) n m j ( n j ) ( j l ) m ! ( m + 1 ) k S 2 ( n j , m ) H j l ( r ) ( a 1 , , a r ; λ 1 , , λ r ) ) x l ,

which is identity (23).

By (11) with (16), we have

g ( f ¯ ( t ) ) 1 f ¯ ( t ) j | x n = j = 1 r ( 1 λ j e a j t λ j ) Li k ( 1 e t ) 1 e t t j | x n = ( n ) j j = 1 r ( 1 λ j e a j t λ j ) Li k ( 1 e t ) 1 e t | x n j = ( n ) j i = 0 T i ( r , k ) ( a 1 , , a r ; λ 1 , , λ r ) t i i ! | x n j = ( n ) j T n j ( r , k ) ( a 1 , , a r ; λ 1 , , λ r ) .

Thus, we get (24). □

3.2 Sheffer identity

Theorem 2

T n ( r , k ) (x+y| a 1 ,, a r ; λ 1 ,, λ r )= j = 0 n ( n j ) T j ( r , k ) (x| a 1 ,, a r ; λ 1 ,, λ r ) y n j .
(25)

Proof By (16) with

p n ( x ) = j = 1 r ( e a j t λ j 1 λ j ) 1 e t Li k ( 1 e t ) T n ( r , k ) ( x | a 1 , , a r ; λ 1 , , λ r ) = x n ( 1 , t ) ,

using (12), we have (25). □

3.3 Recurrence

Theorem 3

T n + 1 ( r , k ) ( x | a 1 , , a r ; λ 1 , , λ r ) = x T n ( r , k ) ( x | a 1 , , a r ; λ 1 , , λ r ) j = 1 r a j 1 λ j T n ( r + 1 , k ) ( x + a j | a 1 , , a r , a j ; λ 1 , , λ r , λ j ) 1 n + 1 l = 0 n + 1 ( n + 1 l ) B n + 1 l × ( T l ( r , k ) ( x | a 1 , , a r ; λ 1 , , λ r ) T l ( r , k 1 ) ( x | a 1 , , a r ; λ 1 , , λ r ) ) ,
(26)

where B n is the nth ordinary Bernoulli number.

Proof By applying

s n + 1 (x)= ( x g ( t ) g ( t ) ) 1 f ( t ) s n (x)

[[4], Corollary 3.7.2] with (16), we get

T n + 1 ( r , k ) (x| a 1 ,, a r ; λ 1 ,, λ r )= ( x g r , k ( t ) g r , k ( t ) ) T n ( r , k ) (x| a 1 ,, a r ; λ 1 ,, λ r ).

Now,

g r , k ( t ) g r , k ( t ) = ( ln g r , k ( t ) ) = ( j = 1 r ln ( e a j t λ j ) j = 1 r ln ( 1 λ j ) + ln ( 1 e t ) ln Li k ( 1 e t ) ) = j = 1 r a j e a j t e a j t λ j + e t 1 e t ( 1 Li k 1 ( 1 e t ) Li k ( 1 e t ) ) = j = 1 r a j e a j t e a j t λ j + t e t 1 Li k ( 1 e t ) Li k 1 ( 1 e t ) t Li k ( 1 e t ) .

Since

T n ( r , k ) (x| a 1 ,, a r ; λ 1 ,, λ r )= i = 1 r ( 1 λ i e a i t λ i ) Li k ( 1 e t ) 1 e t x n ,

we have

T n + 1 ( r , k ) ( x | a 1 , , a r ; λ 1 , , λ r ) = x T n ( r , k ) ( x | a 1 , , a r ; λ 1 , , λ r ) j = 1 r a j e a j t 1 λ j 1 λ j e a j t λ j i = 1 r ( 1 λ i e a i t λ i ) Li k ( 1 e t ) 1 e t x n t e t 1 i = 1 r ( 1 λ i e a i t λ i ) Li k ( 1 e t ) Li k 1 ( 1 e t ) t ( 1 e t ) x n .

Since

Li k ( 1 e t ) Li k 1 ( 1 e t ) 1 e t = ( 1 2 k 1 2 k 1 ) t+

is a delta series, we get

Li k ( 1 e t ) Li k 1 ( 1 e t ) t ( 1 e t ) x n = 1 n + 1 Li k ( 1 e t ) Li k 1 ( 1 e t ) 1 e t x n + 1 .

Therefore, by

t e t 1 x n + 1 = B n + 1 (x)= l = 0 n + 1 ( n + 1 l ) B n + 1 l x l ,

we obtain

T n + 1 ( r , k ) ( x | a 1 , , a r ; λ 1 , , λ r ) = x T n ( r , k ) ( x | a 1 , , a r ; λ 1 , , λ r ) j = 1 r a j 1 λ j T n ( r + 1 , k ) ( x + a j | a 1 , , a r , a j ; λ 1 , , λ r , λ j ) 1 n + 1 i = 1 r ( 1 λ i e a i t λ i ) Li k ( 1 e t ) Li k 1 ( 1 e t ) 1 e t t e t 1 x n + 1 = x T n ( r , k ) ( x | a 1 , , a r ; λ 1 , , λ r ) j = 1 r a j 1 λ j T n ( r + 1 , k ) ( x + a j | a 1 , , a r , a j ; λ 1 , , λ r , λ j ) 1 n + 1 l = 0 n + 1 ( n + 1 l ) B n + 1 l × ( T l ( r , k ) ( x | a 1 , , a r ; λ 1 , , λ r ) T l ( r , k 1 ) ( x | a 1 , , a r ; λ 1 , , λ r ) ) ,

which is identity (26). □

3.4 A more relation

Theorem 4

T n ( r , k ) ( x | a 1 , , a r ; λ 1 , , λ r ) = x T n 1 ( r , k ) ( x | a 1 , , a r ; λ 1 , , λ r ) j = 1 r a j 1 λ j T n 1 ( r + 1 , k ) ( x + a j | a 1 , , a r , a j ; λ 1 , , λ r , λ j ) 1 n l = 0 n ( n l ) B n l ( T l ( r , k ) ( x | a 1 , , a r ; λ 1 , , λ r ) T l ( r , k 1 ) ( x | a 1 , , a r ; λ 1 , , λ r ) ) .
(27)

Proof For n1, we have

T n ( r , k ) ( y | a 1 , , a r ; λ 1 , , λ r ) = l = 0 T l ( r , k ) ( y | a 1 , , a r ; λ 1 , , λ r ) t l l ! | x n = j = 1 r ( 1 λ j e a j t λ j ) Li k ( 1 e t ) 1 e t e y t | x n = t ( j = 1 r ( 1 λ j e a j t λ j ) Li k ( 1 e t ) 1 e t e y t ) | x n 1 = ( t j = 1 r ( 1 λ j e a j t λ j ) ) Li k ( 1 e t ) 1 e t e y t | x n 1 + j = 1 r ( 1 λ j e a j t λ j ) ( t Li k ( 1 e t ) 1 e t ) e y t | x n 1 + j = 1 r ( 1 λ j e a j t λ j ) Li k ( 1 e t ) 1 e t ( t e y t ) | x n 1 = y T n 1 ( r , k ) ( y | a 1 , , a r ; λ 1 , , λ r ) + ( t j = 1 r ( 1 λ j e a j t λ j ) ) Li k ( 1 e t ) 1 e t e y t | x n 1 + j = 1 r ( 1 λ j e a j t λ j ) ( t Li k ( 1 e t ) 1 e t ) e y t | x n 1 .

Observe that

t j = 1 r ( 1 λ j e a j t λ j ) = j = 1 r ( 1 λ j ) t ( 1 j = 1 r ( e a j t λ j ) ) = j = 1 r ( 1 λ j ) ( j = 1 r ( e a j t λ j ) ) ( j = 1 r ( e a j t λ j ) ) 2 = j = 1 r ( 1 λ j ) j = 1 r a j e a j t i j ( e a i t λ i ) ( j = 1 r ( e a j t λ j ) ) 2 = j = 1 r a j e a j t e a j t λ j i = 1 r ( 1 λ i e a i t λ i ) = j = 1 r a j e a j t 1 λ j 1 λ j e a j t λ j i = 1 r ( 1 λ i e a i t λ i ) .

Thus,

( t j = 1 r ( 1 λ j e a j t λ j ) ) Li k ( 1 e t ) 1 e t e y t | x n 1 = j = 1 r a j 1 λ j 1 λ j e a j t λ j i = 1 r ( 1 λ i e a i t λ i ) Li k ( 1 e t ) 1 e t e ( y + a j ) t | x n 1 = j = 1 r a j 1 λ j T n 1 ( r + 1 , k ) ( y + a j | a 1 , , a r , a j ; λ 1 , , λ r , λ j ) .

Since

t ( Li k ( 1 e t ) 1 e t ) = e t ( Li k 1 ( 1 e t ) Li k ( 1 e t ) ) ( 1 e t ) 2 = t e t 1 Li k 1 ( 1 e t ) Li k ( 1 e t ) t ( 1 e t )

and the fact that

Li k 1 ( 1 e t ) Li k ( 1 e t ) 1 e t = ( 1 2 k 1 1 2 k ) t+

is a delta series, we have

j = 1 r ( 1 λ j e a j t λ j ) ( t Li k ( 1 e t ) 1 e t ) e y t | x n 1 = j = 1 r ( 1 λ j e a j t λ j ) t e t 1 Li k 1 ( 1 e t ) Li k ( 1 e t ) t ( 1 e t ) e y t | x n 1 = j = 1 r ( 1 λ j e a j t λ j ) t e t 1 Li k 1 ( 1 e t ) Li k ( 1 e t 1 e t e y t | x n n = 1 n j = 1 r ( 1 λ j e a j t λ j ) Li k 1 ( 1 e t ) Li k ( 1 e t ) 1 e t e y t | t e t 1 x n = 1 n l = 0 n ( n l ) B n l j = 1 r ( 1 λ j e a j t λ j ) Li k 1 ( 1 e t ) Li k ( 1 e t ) 1 e t e y t | x l = 1 n l = 0 n ( n l ) B n l ( T l ( r , k 1 ) ( y | a 1 , , a r ; λ 1 , , λ r ) T l ( r , k ) ( y | a 1 , , a r ; λ 1 , , λ r ) ) .

Therefore, we obtain the desired result. □

Remark After n is replaced by n+1, identity (27) becomes the recurrence formula (26).

3.5 Relations with poly-Bernoulli numbers and Barnes’ multiple Bernoulli numbers

Theorem 5

m = 0 n ( 1 ) n m ( n + 1 m ) T m ( r , k ) ( a 1 , , a r ; λ 1 , , λ r ) = l = 0 n m = 0 l ( 1 ) l m ( l m ) ( n + 1 l + 1 ) B m ( k 1 ) H n l ( r ) ( a 1 , , a r ; λ 1 , , λ r ) .
(28)

Proof We shall compute

j = 1 r ( 1 λ j e a j t λ j ) Li k ( 1 e t ) | x n + 1

in two different ways. On the one hand,

j = 1 r ( 1 λ j e a j t λ j ) Li k ( 1 e t ) | x n + 1 = j = 1 r ( 1 λ j e a j t λ j ) Li k ( 1 e t ) 1 e t | ( 1 e t ) x n + 1 = j = 1 r ( 1 λ j e a j t λ j ) Li k ( 1 e t ) 1 e t | x n + 1 ( x 1 ) n + 1 = m = 0 n ( n + 1 m ) ( 1 ) n m j = 1 r ( 1 λ j e a j t λ j ) Li k ( 1 e t ) 1 e t | x m = m = 0 n ( n + 1 m ) ( 1 ) n m T m ( r , k ) ( a 1 , , a r ; λ 1 , , λ r ) .

On the other hand,

j = 1 r ( 1 λ j e a j t λ j ) Li k ( 1 e t ) | x n + 1 = Li k ( 1 e t ) | j = 1 r ( 1 λ j e a j t λ j ) x n + 1 = Li k ( 1 e t ) | H n + 1 ( r ) ( x | a 1 , , a r ; λ 1 , , λ r ) = 0 t ( Li k ( 1 e s ) ) d s | H n + 1 ( r ) ( x | a 1 , , a r ; λ 1 , , λ r ) = 0 t e s Li k 1 ( 1 e s ) 1 e s d s | H n + 1 ( r ) ( x | a 1 , , a r ; λ 1 , , λ r ) = 0 t ( j = 0 ( s ) j j ! ) ( m = 0 B m ( k 1 ) m ! s m ) d s | H n + 1 ( r ) ( x | a 1 , , a r ; λ 1 , , λ r ) = l = 0 ( m = 0 l ( 1 ) l m ( l m ) B m ( k 1 ) ) 1 l ! 0 t s l d s | H n + 1 ( r ) ( x | a 1 , , a r ; λ 1 , , λ r ) = l = 0 n m = 0 l ( 1 ) l m ( l m ) B m ( k 1 ) ( l + 1 ) ! t l + 1 | H n + 1 ( r ) ( x | a 1 , , a r ; λ 1 , , λ r ) = l = 0 n m = 0 l ( 1 ) l m ( l m ) B m ( k 1 ) ( l + 1 ) ! ( n + 1 ) l + 1 H n l ( r ) ( a 1 , , a r ; λ 1 , , λ r ) = l = 0 n m = 0 l ( 1 ) l m ( l m ) ( n + 1 l + 1 ) B m ( k 1 ) H n l ( r ) ( a 1 , , a r ; λ 1 , , λ r ) .

Here, H n l ( r ) ( a 1 ,, a r ; λ 1 ,, λ r )= H n l ( r ) (0| a 1 ,, a r ; λ 1 ,, λ r ). Thus, we get (28). □

3.6 Relations with the Stirling numbers of the second kind and the falling factorials

Theorem 6

T n ( r , k ) ( x | a 1 , , a r ; λ 1 , , λ r ) = m = 0 n ( l = m n ( n l ) S 2 ( l , m ) T n l ( r , k ) ( a 1 , , a r ; λ 1 , , λ r ) ) ( x ) m .
(29)

Proof For (16) and ( x ) n (1, e t 1), assume that

T n ( r , k ) (x| a 1 ,, a r ; λ 1 ,, λ r )= m = 0 n C n , m ( x ) m .

By (13), we have

C n , m = 1 m ! 1 j = 1 r ( e a j t λ j 1 λ j ) 1 e t Li k ( 1 e t ) ( e t 1 ) m | x n = 1 m ! j = 1 r ( 1 λ j e a j t λ j ) Li k ( 1 e t ) 1 e t | ( e t 1 ) m x n = 1 m ! j = 1 r ( 1 λ j e a j t λ j ) Li k ( 1 e t ) 1 e t | m ! l = m n S 2 ( l , m ) t l l ! x n = l = m n ( n l ) S 2 ( l , m ) j = 1 r ( 1 λ j e a j t λ j ) Li k ( 1 e t ) 1 e t | x n l = l = m n ( n l ) S 2 ( l , m ) T n l ( r , k ) ( a 1 , , a r ; λ 1 , , λ r ) .

Thus, we get identity (29). □

3.7 Relations with the Stirling numbers of the second kind and the rising factorials

Theorem 7

T n ( r , k ) ( x | a 1 , , a r ; λ 1 , , λ r ) = m = 0 n ( l = m n ( n l ) S 2 ( l , m ) T n l ( r , k ) ( m | a 1 , , a r ; λ 1 , , λ r ) ) ( x ) ( m ) .
(30)

Proof For (16) and ( x ) ( n ) =x(x+1)(x+n1)(1,1 e t ), assume that T n ( r , k ) (x| a 1 ,, a r ; λ 1 ,, λ r )= m = 0 n C n , m ( x ) ( m ) . By (13), we have

C n , m = 1 m ! 1 j = 1 r ( e a j t λ j 1 λ j ) 1 e t Li k ( 1 e t ) ( 1 e t ) m | x n = 1 m ! j = 1 r ( 1 λ j e a j t λ j ) Li k ( 1 e t ) 1 e t e m t | ( e t 1 ) m x n = l = m n ( n l ) S 2 ( l , m ) e m t | j = 1 r ( 1 λ j e a j t λ j ) Li k ( 1 e t ) 1 e t x n l = l = m n ( n l ) S 2 ( l , m ) e m t | T n l ( r , k ) ( x | a 1 , , a r ; λ 1 , , λ r ) = l = m n ( n l ) S 2 ( l , m ) T n l ( r , k ) ( m | a 1 , , a r ; λ 1 , , λ r ) .

Thus, we get identity (30). □

3.8 Relations with higher-order Frobenius-Euler polynomials

Theorem 8

T n ( r , k ) ( x | a 1 , , a r ; λ 1 , , λ r ) = m = 0 n ( ( n m ) ( 1 λ ) s l = 0 s ( s l ) ( λ ) s l T n m ( r , k ) ( l | a 1 , , a r ; λ 1 , , λ r ) ) H m ( s ) ( x | λ ) .
(31)

Proof For (16) and

H n ( s ) (x|λ) ( ( e t λ 1 λ ) s , t ) ,

assume that T n ( r , k ) (x| a 1 ,, a r ; λ 1 ,, λ r )= m = 0 n C n , m H m ( s ) (x|λ). By (13), we have

C n , m = 1 m ! ( e t λ 1 λ ) s j = 1 r ( 1 λ j e a j t λ j ) Li k ( 1 e t ) 1 e t t m | x n = 1 m ! ( 1 λ ) s l = 0 s ( s l ) ( λ ) s l e l t j = 1 r ( 1 λ j e a j t λ j ) Li k ( 1 e t ) 1 e t | t m x n = ( n m ) ( 1 λ ) s l = 0 s ( s l ) ( λ ) s l e l t | j = 1 r ( 1 λ j e a j t λ j ) Li k ( 1 e t ) 1 e t x n m = ( n m ) ( 1 λ ) s l = 0 s ( s l ) ( λ ) s l T n m ( r , k ) ( l | a 1 , , a r ; λ 1 , , λ r ) .

Thus, we get identity (31). □

3.9 Relations with higher-order Bernoulli polynomials

Bernoulli polynomials B n ( r ) (x) of order r are defined by

( t e t 1 ) r e x t = n = 0 B n ( r ) ( x ) n ! t n

(see, e.g., [[4], Section 2.2]).

Theorem 9

T n ( r , k ) ( x | a 1 , , a r ; λ 1 , , λ r ) = m = 0 n ( n m ) ( l = 0 n m ( n m l ) ( l + s l ) S 2 ( l + s , s ) T n m l ( r , k ) ( a 1 , , a r ; λ 1 , , λ r ) ) B m ( s ) ( x ) .
(32)

Proof For (16) and

B n ( s ) (x) ( ( e t 1 t ) s , t ) ,

assume that T n ( r , k ) (x| a 1 ,, a r ; λ 1 ,, λ r )= m = 0 n C n , m B m ( s ) (x). By (13), we have

C n , m = 1 m ! ( e t 1 t ) s j = 1 r ( 1 λ j e a j t λ j ) Li k ( 1 e t ) 1 e t t m | x n = ( n m ) j = 1 r ( 1 λ j e a j t λ j ) Li k ( 1 e t ) 1 e t | ( e t 1 t ) s x n m = ( n m ) j = 1 r ( 1 λ j e a j t λ j ) Li k ( 1 e t ) 1 e t | l = 0 n m s ! ( l + s ) ! S 2 ( l + s , s ) t l x n m = ( n m ) l = 0 n m s ! ( l + s ) ! S 2 ( l + s , s ) ( n m ) l j = 1 r ( 1 λ j e a j t λ j ) Li k ( 1 e t ) 1 e t | x n m l = ( n m ) l = 0 n m s ! ( l + s ) ! S 2 ( l + s , s ) ( n m ) l T n m l ( r , k ) ( a 1 , , a r ; λ 1 , , λ r ) = ( n m ) l = 0 n m ( n m l ) ( l + s l ) S 2 ( l + s , s ) T n m l ( r , k ) ( a 1 , , a r ; λ 1 , , λ r ) .

Thus, we get identity (32). □